Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Mol Med ; 30(3): 200-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177028

RESUMO

Klein et al. report multimodal analyses of immune cells, proteins, and physiological parameters in patients with long COVID (LC). At the group level, LC subjects exhibited elevated antibody responses to SARS-CoV-2, but also to herpes viruses, pointing to a general suppression of viral control mechanisms in LC.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , SARS-CoV-2 , Sistema Imunitário
2.
Pediatr Res ; 95(3): 762-769, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38001236

RESUMO

BACKGROUND: Antisecretory Factor (AF) is a protein present in breastmilk that regulates inflammatory processes. We aimed to investigate the level of AF in mothers' own milk (MOM) in relation to sepsis and other neonatal morbidities in preterm infants. METHODS: Samples of breastmilk and infant plasma were collected at 1, 4, and 12 weeks after birth from 38 mothers and their 49 infants born before 30 weeks gestation. AF-compleasome in MOM was determined by a sandwich enzyme-linked immunosorbent assay (ELISA) and inflammatory markers in infant plasma by a panel of 92 inflammatory proteins. Neonatal treatments and outcomes were recorded. RESULTS: The level of AF in MOM week 1 was lower for infants with later sepsis compared to no sepsis (p = 0.005). Corrected for nutritional intake of MOM, higher levels of AF decreased the risk for sepsis, OR 0.24. AF in MOM week 1 was negatively correlated to inflammatory proteins in infant plasma week 4, markedly IL-8, which was also associated with infant sepsis. Overall, higher AF levels in MOM was associated with fewer major morbidities of prematurity. CONCLUSION: Mother's milk containing high levels of antisecretory factor is associated with reduced risk for sepsis and inflammation in preterm infants. IMPACT: High level of antisecretory factor (AF) in mothers' own milk is associated with less risk for later sepsis in preterm infants. Receiving mothers' milk with low AF levels during the first week after birth is correlated with more inflammatory proteins in infant's plasma 2-4 weeks later. Human breastmilk has anti-inflammatory properties, and antisecretory factor in mothers' own milk is a component of potential importance for infants born preterm. The findings suggest that food supplementation with AF to mothers of preterm infants to increase AF-levels in breastmilk may be a means to decrease the risk of inflammatory morbidities of prematurity.


Assuntos
Recém-Nascido Prematuro , Neuropeptídeos , Sepse , Lactente , Feminino , Humanos , Recém-Nascido , Leite Humano , Incidência , Recém-Nascido de muito Baixo Peso , Mães , Sepse/epidemiologia , Aleitamento Materno
3.
Oxf Open Immunol ; 4(1): iqad003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255930

RESUMO

Myalgic encephalomyelitis (ME) previously also known as chronic fatigue syndrome is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection. The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation. Here, we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation targeting nerve endings in the nasal cavity, likely from the trigeminal nerve, possibly activating additional centers in the brainstem of ME patients and correlating with a ∼30% reduction in overall symptom scores after 8 weeks of treatment. By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover signs of chronic immune activation in ME, as well as immunological correlates of improvement that center around gut-homing immune cells and reduced inflammation. The mechanisms of symptom relief remain to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We believe that these results are suggestive of ME as a condition explained by a maladaptive disease tolerance response following infection.

4.
Immunity ; 56(6): 1255-1268.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059107

RESUMO

In early life, susceptibility to invasive infection skews toward a small subset of microbes, whereas other pathogens associated with diseases later in life, including Streptococcus pneumoniae (Spn), are uncommon among neonates. To delineate mechanisms behind age-dependent susceptibility, we compared age-specific mouse models of invasive Spn infection. We show enhanced CD11b-dependent opsonophagocytosis by neonatal neutrophils improved protection against Spn during early life. The augmented function of neonatal neutrophils was mediated by higher CD11b surface expression at the population level due to dampened efferocytosis, which also resulted in more CD11bhi "aged" neutrophils in peripheral blood. Dampened efferocytosis during early life could be attributed to the lack of CD169+ macrophages in neonates and reduced systemic expressions of multiple efferocytic mediators, including MerTK. On experimentally impairing efferocytosis later in life, CD11bhi neutrophils increased and protection against Spn improved. Our findings reveal how age-dependent differences in efferocytosis determine infection outcome through the modulation of CD11b-driven opsonophagocytosis and immunity.


Assuntos
Neutrófilos , Fagocitose , Camundongos , Animais , Humanos , Macrófagos/metabolismo , Streptococcus pneumoniae , c-Mer Tirosina Quinase
5.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34143954

RESUMO

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Assuntos
Bifidobacterium/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/microbiologia , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Aleitamento Materno , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Proliferação de Células , Citocinas/metabolismo , Fezes/química , Fezes/microbiologia , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indóis/metabolismo , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Mucosa Intestinal/imunologia , Metaboloma , Leite Humano/química , Oligossacarídeos/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Água
6.
Cell ; 183(4): 968-981.e7, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32966765

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is typically very mild and often asymptomatic in children. A complication is the rare multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, presenting 4-6 weeks after infection as high fever, organ dysfunction, and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines, and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2, and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T cell subsets, interleukin (IL)-17A, and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C.


Assuntos
Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Autoanticorpos/sangue , Betacoronavirus/isolamento & purificação , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Feminino , Humanos , Imunidade Humoral , Lactente , Masculino , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/imunologia , Síndrome de Linfonodos Mucocutâneos/patologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/virologia , Análise de Componente Principal , Proteoma/análise , SARS-CoV-2 , Índice de Gravidade de Doença , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Cell Rep Med ; 1(5): 100078, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32838342

RESUMO

Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5-7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Given that every patient is captured at different stages of infection, longitudinal monitoring of the immune response is critical and systems-level analyses are required to capture cellular interactions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19.


Assuntos
COVID-19/imunologia , Imunidade Adaptativa , Adulto , Basófilos/metabolismo , COVID-19/sangue , Comunicação Celular , Convalescença , Eosinófilos/metabolismo , Feminino , Humanos , Inflamação , Interferon gama/sangue , Interleucina-6/sangue , Estudos Longitudinais , Masculino , SARS-CoV-2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA