RESUMO
Assisted reproduction techniques have improved considerably in recent decades, but despite these advances, success rates remain relatively low. Endometrial immune profiling involves the analysis of cytokine biomarkers in the endometrium during the mid-luteal phase. This profiling aims to provide insights into the immune environment of the uterus. The aim is to identify immune disturbances and thus guide the development of personalized therapeutic approaches. The first part of the review looks back at the emergence of innovative concepts, highlighting the specificity of the human uterine environment at the time of implantation. Based on this new knowledge, biomarkers have been selected for endometrial immune profiling. The second part details the results of clinical studies conducted over the last ten years. These clinical results suggest that this approach can increase the rate of live births in patients suffering from repeated implantation failures or repeated pregnancy loss. Uterine immune profiling represents a clinical innovation that can significantly improve the performance of medically assisted reproduction treatments through personalized strategies tailored to the local immune profile. Innovation in personalized medicine for assisted reproduction is crucial to improving the success rates of fertility treatments, while reducing the risks and costs associated with ineffective or unnecessary interventions.
Assuntos
Implantação do Embrião , Útero , Gravidez , Feminino , Humanos , Endométrio , Técnicas de Reprodução Assistida , BiomarcadoresRESUMO
Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.
Assuntos
Microbioma Gastrointestinal , Transtornos do Crescimento , Intestino Delgado , Lipídeos , Boca , Animais , Bactérias , Pré-Escolar , Estudos Transversais , Transtornos do Crescimento/etiologia , Humanos , Complexo Antígeno L1 Leucocitário , Metabolismo dos Lipídeos , Síndromes de Malabsorção , Camundongos , Modelos Teóricos , Boca/microbiologiaRESUMO
Environmental enteric dysfunction (EED) is an elusive, inflammatory syndrome of the small intestine thought to be associated with enterocyte loss and gut leakiness and lead to stunted child growth. To date, the gold standard for diagnosis is small intestine biopsy followed by histology. Several putative biomarkers for EED have been proposed and are widely used in the field. Here, we assessed in a cross-sectional study of children aged 2-5 years for a large set of biomarkers including markers of protein exudation (duodenal and fecal alpha-1-antitrypsin (AAT)), inflammation (duodenal and fecal calprotectin, duodenal, fecal and blood immunoglobulins, blood cytokines, C-reactive protein (CRP)), gut permeability (endocab, lactulose-mannitol ratio), enterocyte mass (citrulline) and general nutritional status (branched-chain amino acids (BCAA), insulin-like growth factor) in a group of 804 children in two Sub-Saharan countries. We correlated these markers with each other and with anemia in stunted and non-stunted children. AAT and calprotectin, CRP and citrulline and citrulline and BCAA correlated with each other. Furthermore, BCAA, citrulline, ferritin, fecal calprotectin and CRP levels were correlated with hemoglobin levels. Our results show that while several of the biomarkers are associated with anemia, there is little correlation between the different biomarkers. Better biomarkers and a better definition of EED are thus urgently needed.
Assuntos
Biomarcadores , Doença Ambiental , Enteropatias , Intestino Delgado , África Subsaariana , Biomarcadores/análise , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Pré-Escolar , Citrulina/análise , Estudos Transversais , Doença Ambiental/diagnóstico , Doença Ambiental/metabolismo , Transtornos do Crescimento , Humanos , Enteropatias/diagnóstico , Enteropatias/etiologia , Enteropatias/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Complexo Antígeno L1 LeucocitárioRESUMO
Vaccination is one of the most efficient public healthcare measures to fight infectious diseases. Nevertheless, the immune mechanisms induced in vivo by vaccination are still unclear. The route of administration, an important vaccination parameter, can substantially modify the quality of the response. How the route of administration affects the generation and profile of immune responses is of major interest. Here, we aimed to extensively characterize the profiles of the innate and adaptive response to vaccination induced after intradermal, subcutaneous, or intramuscular administration with a modified vaccinia virus Ankara model vaccine in non-human primates. The adaptive response following subcutaneous immunization was clearly different from that following intradermal or intramuscular immunization. The subcutaneous route induced a higher level of neutralizing antibodies than the intradermal and intramuscular vaccination routes. In contrast, polyfunctional CD8+ T-cell responses were preferentially induced after intradermal or intramuscular injection. We observed the same dichotomy when analyzing the early molecular and cellular immune events, highlighting the recruitment of cell populations, such as CD8+ T lymphocytes and myeloid-derived suppressive cells, and the activation of key immunomodulatory gene pathways. These results demonstrate that the quality of the vaccine response induced by an attenuated vaccine is shaped by early and subtle modifications of the innate immune response. In this immunization context, the route of administration must be tailored to the desired type of protective immune response. This will be achieved through systems vaccinology and mathematical modeling, which will be critical for predicting the efficacy of the vaccination route for personalized medicine.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Supressoras Mieloides/imunologia , Vacinação , Vaccinia virus/imunologia , Vacínia/imunologia , Vacinas Virais/farmacologia , Animais , Injeções Intradérmicas , Injeções Intramusculares , Macaca fascicularis , Masculino , Vacinas Atenuadas/farmacologiaRESUMO
BACKGROUND: Child undernutrition is a global health issue that is associated with poor sanitation and an altered intestinal microbiota. Immunoglobulin (Ig) A mediates host-microbial homeostasis in the intestine, and acutely undernourished children have been shown to have altered IgA recognition of the fecal microbiota. We sought to determine whether chronic undernutrition (stunting) or intestinal inflammation were associated with antibody recognition of the microbiota using two geographically distinct populations from the Afribiota project. Fecal bacteria from 200 children between 2 and 5 years old in Antananarivo, Madagascar, and Bangui, Central African Republic (CAR), were sorted into IgA-positive (IgA+) and IgA-negative (IgA-) populations by flow cytometry and subsequently characterized by 16S rRNA gene sequencing to determine IgA-bacterial targeting. We additionally measured IgG+ fecal bacteria by flow cytometry in a subset of 75 children. RESULTS: Stunted children (height-for-age z-score ≤ -2) had a greater proportion of IgA+ bacteria in the fecal microbiota compared to non-stunted controls. This trend was consistent in both countries, despite the higher overall IgA-targeting of the microbiota in Madagascar, but lost significance in each country individually. Two of the most highly IgA-recognized bacteria regardless of nutritional status were Campylobacter (in CAR) and Haemophilus (in both countries), both of which were previously shown to be more abundant in stunted children; however, there was no association between IgA-targeting of these bacteria and either stunting or inflammatory markers. IgG-bound intestinal bacteria were rare in both stunted and non-stunted children, similar to levels observed in healthy populations. CONCLUSIONS: Undernourished children carry a high load of intestinal pathogens and pathobionts. Our data suggest that stunted children have a greater proportion of IgA-recognized fecal bacteria. We moreover identify two putative pathobionts, Haemophilus and Campylobacter, that are broadly targeted by intestinal IgA. This study furthers our understanding of host-microbiota interactions in undernutrition and identifies immune-recognized microbes for future study.
Assuntos
Bactérias/imunologia , Bactérias/isolamento & purificação , Fezes/microbiologia , Transtornos do Crescimento/microbiologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Desnutrição/microbiologia , Bactérias/genética , República Centro-Africana , Pré-Escolar , Feminino , Humanos , Madagáscar , Masculino , RNA Ribossômico 16S/genéticaRESUMO
Comprehending the mechanisms behind the impact of vaccine regimens on immunity is critical for improving vaccines. Indeed, the time-interval between immunizations may influence B and T cells, as well as innate responses. We compared two vaccine schedules using cynomolgus macaques immunized with an attenuated vaccinia virus. Two subcutaneous injections 2 weeks apart led to an impaired secondary antibody response and similar innate myeloid responses to both immunizations. In contrast, a delayed boost (2 months) improved the quality of the antibody response and involved more activated/mature innate cells, induced late after the prime and responding to the recall. The magnitude and quality of the secondary antibody response correlated with the abundance of these neutrophils, monocytes, and dendritic cells that were modified phenotypically and enriched prior to revaccination at 2 months, but not 2 weeks. These late phenotypic modifications were associated with an enhanced ex vivo cytokine production (including IL-12/23 and IL-1ß) by PBMCs short after the second immunization, linking phenotype and functions. This integrated analysis reveals a deep impact of the timing between immunizations, and highlights the importance of early but also late innate responses involving phenotypical changes, in shaping humoral immunity.
RESUMO
Broadening our understanding of the abundance and phenotype of B cell subsets that are induced or perturbed by exogenous Ags will improve the vaccine evaluation process. Mass cytometry (CyTOF) is being used to increase the number of markers that can be investigated in single cells, and therefore characterize cell phenotype at an unprecedented level. We designed a panel of CyTOF Abs to compare the B cell response in cynomolgus macaques at baseline, and 8 and 28 d after the second homologous immunization with modified vaccinia virus Ankara. The spanning-tree progression analysis of density-normalized events (SPADE) algorithm was used to identify clusters of CD20(+) B cells. Our data revealed the phenotypic complexity and diversity of circulating B cells at steady-state and significant vaccine-induced changes in the proportions of some B cell clusters. All SPADE clusters, including those altered quantitatively by vaccination, were characterized phenotypically and compared using double hierarchical clustering. Vaccine-altered clusters composed of previously described subsets including CD27(hi)CD21(lo) activated memory and CD27(+)CD21(+) resting memory B cells, and subphenotypes with novel patterns of marker coexpression. The expansion, followed by the contraction, of a single memory B cell SPADE cluster was positively correlated with serum anti-vaccine Ab titers. Similar results were generated by a different algorithm, automatic classification of cellular expression by nonlinear stochastic embedding. In conclusion, we present an in-depth characterization of B cell subphenotypes and proportions, before and after vaccination, using a two-step clustering analysis of CyTOF data, which is suitable for longitudinal studies and B cell subsets and biomarkers discovery.