Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X231214826, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974302

RESUMO

The combustion of fossil fuels, mainly by diesel engines, generates Diesel Exhaust Particles (DEP) which are the main source of Particulate Matter (PM), a major air pollutant in urban areas. These particles are a risk factor for stroke with 5.6% of cases attributed to PM exposure. Our aim was to evaluate the effect of DEP exposure on clot formation and lysis in the context of stroke. An ex-vivo clot formation and lysis turbidimetric assay has been conducted in human and mouse plasma samples from ischemic stroke or control subjects exposed to DEP or control conditions. Experimental DEP exposure was achieved by nasal instillation in mice, or by ex-vivo exposure in human plasma. Results show consistent pro-thrombogenic features in plasma after human ischemic stroke and mouse cerebral ischemia (distal MCAo), boosted by the presence of DEP. Otherwise, thrombolysis times were increased after ischemia in chronically exposed mice but not in the DEP exposed group. Finally, subjects living in areas with high PM levels presented accelerated thrombolysis compared to those living in low polluted areas. Overall, our results point at a disbalance of the thrombogenic/lytic system in presence of DEP which could impact on ischemic stroke onset, clot size and thrombolytic treatment.

2.
Front Neurosci ; 16: 977209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161150

RESUMO

Postnatal and adult neurogenesis takes place in the dentate gyrus of the hippocampus in the vast majority of mammals due to the persistence of a population of neural stem cells (NSCs) that also generate astrocytes and more NSCs. These are highly plastic and dynamic phenomena that undergo continuous modifications in response to the changes brain homeostasis. The properties of NSCs as well as the process of neurogenesis and gliogenesis, are reshaped divergently by changes in neuronal activity and by different types of disease and damage. This richness of plastic responses identifies NSCs and newborn neurons as biosensors of the health state of the hippocampus, detecting and providing useful information about processes such as neuronal and network hyperexcitation, excitotoxicity, neurodegeneration, and neuroinflammation. Learning to gather and use this information is a challenge worth of our attention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA