Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(10): e0184741, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28977016

RESUMO

Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet's biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities.


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Anfíbios/classificação , Anfíbios/genética , Animais , Sequência de Bases , Biodiversidade , Florestas , Répteis/classificação , Répteis/genética , Homologia de Sequência do Ácido Nucleico , Clima Tropical
2.
Mol Phylogenet Evol ; 80: 125-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25109650

RESUMO

The Eastern Afromontane Region (EAR) contains numerous endemic species, yet its reptile diversity remains relatively poorly understood. We used molecular data to examine species diversity of the Sub-Saharan chameleon genus Trioceros. In particular, we focus on establishing species boundaries for taxa with disjunct distributions across the fragmented mountains of the EAR, including T. affinis, T. balebicornutus, T. deremensis, T. harennae, T. tempeli and T. werneri. We applied three species-delimiting approaches, General Mixed Yule-Coalescent (GMYC), a Bayesian implementation of the GMYC, and Bayes Factor Delimitation to estimate species diversity. Using a dated phylogeny, we also examined spatial and temporal diversification patterns in Trioceros. We found strong congruence between different species delimitation approaches, with all methods suggesting that species diversity is currently underestimated. In particular, T. werneri consists of at least four candidate species (i.e. species awaiting description) with some mountain ranges (Uluguru and Udzungwa) having potentially more than one species. Most interspecific divergences between extant Trioceros lineages are estimated to be >5Mya, consistent with a Pliocene origin of the endemic montane fauna, as exhibited in other taxonomic groups. Multiple, overlapping geographic events (climate and/or geomorphological changes) might account for speciation patterns in Trioceros given the dating results.


Assuntos
Evolução Biológica , Lagartos/classificação , Filogenia , África Subsaariana , Animais , Teorema de Bayes , Clima , Funções Verossimilhança , Lagartos/genética , Modelos Genéticos , Análise de Sequência de DNA
3.
PLoS One ; 9(5): e96032, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804779

RESUMO

One of the major challenges in the analysis of closely related species, speciation and phylogeography is the identification of variable sequence markers that allow the determination of genealogical relationships in multiple genomic regions using coalescent and species tree approaches. Rodent species represent nearly half of the mammalian diversity, but so far no systematic study has been carried out to detect suitable informative markers for this group. Here, we used a bioinformatic pipeline to extract intron sequences from rodent genomes available in databases and applied a series of filters that allowed the identification of 208 introns that adequately fulfilled several criteria for these studies. The main required characteristics of the introns were that they had the maximum possible mutation rates, that they were part of single-copy genes, that they had an appropriate sequence length for amplification, and that they were flanked by exons with suitable regions for primer design. In addition, in order to determine the validity of this approach, we chose ten of these introns for primer design and tested them in a panel of eleven rodent species belonging to different representative families. We show that all these introns can be amplified in the majority of species and that, overall, 79% of the amplifications worked with minimum optimization of the annealing temperature. In addition, we confirmed for a pair of sister species the relatively high level of sequence divergence of these introns. Therefore, we provide here a set of adequate intron markers that can be applied to different species of Rodentia for their use in studies that require significant sequence variability.


Assuntos
Biologia Computacional/métodos , Animais , Íntrons/genética , Funções Verossimilhança , Camundongos , Filogenia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA