Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 56, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095861

RESUMO

Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.

2.
FEMS Microbiol Ecol ; 96(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32804239

RESUMO

To investigate the effect that restoration has on the microbiome of wetland soils, we used 16S amplicon sequencing to characterize the soil prokaryotic communities of retired cranberry farms that were restored to approximate the peat wetlands they once were. For comparison, we also surveyed the soil communities of active cranberry farms, retired cranberry farms and natural peat wetlands that were never farmed. Our results show that the prokaryotic communities of active cranberry farms are distinct from those of natural peat wetlands. Moreover, 4 years after restoration, the prokaryotic community structure of restored cranberry farms had shifted, resulting in a community more similar to natural peat wetlands than to active farms. Meanwhile, the prokaryotic communities of retired cranberry farms remained similar to those of active farms. The observed differences in community structure across site types corresponded with significant differences in inferred capacity for denitrification, methanotrophy and methanogenesis, and community composition was also correlated with previously published patterns of denitrification and carbon sequestration measured from the same soil samples. Taken together, these results suggest that ecological restoration efforts have the potential to restore ecosystem functions of soils and that they do so by 'rewilding' the communities of resident soil microbes.


Assuntos
Microbiota , Solo , Carbono , Sequestro de Carbono , Microbiologia do Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA