Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Braz J Microbiol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014291

RESUMO

Water buffalo (Bubalus bubalis) farming is increasing in many regions of the world due to the species' ability to thrive in environments where bovine cattle would struggle. Despite water buffaloes being known for their resistance to diseases, there is a lack of data about the diversity of the microbiome of the species. In this study, we examined the virome diversity in palatine tonsils collected from animals from the island of Marajó, northern Pará state, Brazil, which harbors the largest bubaline flock in the country. Tonsil fragments from 60 clinically healthy bubalines were randomly selected from a sample of 293 animals. The samples were purified, extracted, and randomly amplified with phi29 DNA polymerase. After amplification, the products were purified and sequenced. Circular DNA viruses were predominant in the tonsils' virome. Sequences of genome segments representative of members of the genera Alphapolyomavirus (including a previously unreported bubaline polyomavirus genome) and Gemycircularvirus were identified, along with other not yet classified circular virus genomes. As the animals were clinically healthy at the time of sampling, such viruses likely constitute part of the normal tonsillar virome of water buffaloes inhabiting the Ilha do Marajó biome.

2.
Pathogens ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921757

RESUMO

The Chikungunya virus (CHIKV) presents global health challenges, with Brazil experiencing outbreaks since its introduction in 2014. In 2023, following a CHIKV outbreak in Minas Gerais (MG), social media was used to optimize an entomological survey aimed at identifying vectors and viral lineages and assessing insecticide resistance. Following Instagram posts, residents with suspected CHIKV infection were able to schedule mosquito aspirations. In total, 421 mosquitoes (165 Aedes aegypti and 256 Culex quinquefasciatus) were captured from 40 households in Salinas city (MG) and tested for the Dengue, Zika, and Chikungunya viruses through RT-qPCR. Twelve of 57 pools (10 Ae. aegypti and two Cx. quinquefasciatus) tested positive for CHIKV RNA. Viral RNA was also detected in the heads of nine Ae. aegypti, indicating viral dissemination but not in Cx. quinquefasciatus. Genome sequencing yielded the first near-complete genome from the 2023 outbreak, unveiling that the CHIKV strain belonged to the East/Central/South African (ECSA) genotype. Additionally, genetic analyses revealed high frequencies of kdr alleles, including in CHIKV-infected mosquitoes, suggesting resistance to pyrethroid insecticides in this Ae. aegypti population. Social media was important for guiding mosquito-capture efforts in CHIKV transmission hotspots, thus optimizing the opportunity for viral detection. These findings emphasize the urgent need for innovative vector studies and control strategies, as well as interdisciplinary approaches in public health interventions.

3.
Oncol Lett ; 27(4): 176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464338

RESUMO

Glioblastoma (GBM) is one of the most common types of brain tumor in adults. Despite the availability of treatments for this disease, GBM remains one of the most lethal and difficult types of tumors to treat, and thus, a majority of patients die within 2 years of diagnosis. Infection with Zika virus (ZIKV) inhibits cell proliferation and induces apoptosis, particularly in developing neuronal cells, and thus could potentially be considered an alternative for GBM treatment. In the present study, two GBM cell lines (U-138 and U-251) were infected with ZIKV at different multiplicities of infection (0.1, 0.01 and 0.001), and cell viability, migration, adhesion, induction of apoptosis, interleukin levels and CD14/CD73 cell surface marker expression were analyzed. The present study demonstrated that ZIKV infection promoted loss of cell viability and increased apoptosis in U-138 cells, as measured by MTT and triplex assay, respectively. Changes in cell migration, as determined by wound healing assay, were not observed; however, the GBM cell lines exhibited an increase in cell adhesion when compared with non-tumoral cells (Vero). The Luminex immunoassay showed a significant increase in the expression levels of IL-4 specifically in U-251 cells (MOI 0.001) following exposure to ZIKV. There was no significant change in the expression levels of IFN-γ upon ZIKV infection in the cell lines tested. Furthermore, a marked increase in the percentage of cells expressing the CD14 surface marker was observed in both GBM cell lines compared with in Vero cells; and significantly increased CD73 expression was observed particularly in U-251 cells, when compared with uninfected cells. These findings indicate that ZIKV infection could lead to reduced cell viability, elevated CD73 expression, improved cellular adherence, and higher rates of apoptosis in glioblastoma cells. Further studies are required to explore the potential use of ZIKV in the treatment of GBM.

4.
Comput Biol Med ; 173: 108259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522248

RESUMO

Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.


Assuntos
Complicações Infecciosas na Gravidez , Teratogênese , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Humanos , Zika virus/genética , Infecção por Zika virus/genética , Antígeno Nuclear de Célula em Proliferação
5.
Exp Neurol ; 374: 114699, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301864

RESUMO

The congenital Zika syndrome (CZS) has been characterized as a set of several brain changes, such as reduced brain volume and subcortical calcifications, in addition to cognitive deficits. Microcephaly is one of the possible complications found in newborns exposed to Zika virus (ZIKV) during pregnancy, although it is an impacting clinical sign. This study aimed to investigate the consequences of a model of congenital ZIKV infection by evaluating the histopathology, blood-brain barrier, and neuroinflammation in pup rats 24 h after birth, and neurodevelopment of the offspring. Pregnant rats were inoculated subcutaneously with ZIKV-BR at the dose 1 × 107 plaque-forming unit (PFU mL-1) of ZIKV isolated in Brazil (ZIKV-BR) on gestational day 18 (G18). A set of pups, 24 h after birth, was euthanized. The brain was collected and later evaluated for the histopathology of brain structures through histological analysis. Additionally, analyses of the blood-brain barrier were conducted using western blotting, and neuroinflammation was assessed using ELISA. Another set of animals was evaluated on postnatal days 3, 6, 9, and 12 for neurodevelopment by observing the developmental milestones. Our results revealed hippocampal atrophy in ZIKV animals, in addition to changes in the blood-brain barrier structure and pro-inflammatory cytokines expression increase. Regarding neurodevelopment, a delay in important reflexes during the neonatal period in ZIKV animals was observed. These findings advance the understanding of the pathophysiology of CZS and contribute to enhancing the rat model of CZS.


Assuntos
Microcefalia , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Ratos , Animais , Infecção por Zika virus/complicações , Infecção por Zika virus/diagnóstico , Zika virus/fisiologia , Complicações Infecciosas na Gravidez/patologia , Barreira Hematoencefálica/patologia , Doenças Neuroinflamatórias , Microcefalia/etiologia , Microcefalia/patologia , Atrofia/patologia , Hipocampo/patologia
6.
Viruses ; 15(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38005815

RESUMO

In Brazil, the state of Tocantins, located in north-central Brazil, has experienced a significant number of cases of arboviral disease, particularly Dengue virus (DENV). This study aimed to deepen the knowledge on DENV circulation within that state by conducting full genome sequencing of viral genomes recovered from 61 patients between June 2021 and July 2022. There were a total of 8807 and 20,692 cases in 2021 and 2022, respectively, as reported by the state's Secretary of Health. Nucleotide sequencing confirmed the circulation of DENV serotype 1, genotype V and DENV serotype 2, genotype III in the State. Younger age groups (4 to 43 years old) were mostly affected; however, no significant differences were detected regarding the gender distribution of cases in humans. Phylogenetic analysis revealed that the circulating viruses belong to DENV-1 genotype V American and DENV-2 genotype III Southeast Asian/American. The Bayesian analysis of DENV-1 genotype V genomes sequenced here are closely related to genomes previously sequenced in the state of São Paulo. Regarding the DENV-2 genotype III genomes, these clustered in a distinct, well-supported subclade, along with previously reported isolates from the states of Goiás and São Paulo. The findings reported here suggest that multiple introductions of these genotypes occurred in the Tocantins state. This observation highlights the importance of major population centers in Brazil on virus dispersion, such as those observed in other Latin American and North American countries. In the SNP analysis, DENV-1 displayed 122 distinct missense mutations, while DENV-2 had 44, with significant mutations predominantly occurring in the envelope and NS5 proteins. The analyses performed here highlight the concomitant circulation of distinct DENV-1 and -2 genotypes in some Brazilian states, underscoring the dynamic evolution of DENV and the relevance of surveillance efforts in supporting public health policies.


Assuntos
Vírus da Dengue , Dengue , Humanos , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Dengue/epidemiologia , Filogenia , Sorogrupo , Brasil/epidemiologia , Teorema de Bayes , Genótipo
7.
bioRxiv ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37502963

RESUMO

Canine parvovirus (CPV) is a highly pathogenic virus that affects dogs, especially puppies. CPV is believed to have evolved from feline panleukopenia virus (FPV), eventually giving rise to three antigenic types, CPV-2a, 2b, and 2c. CPV-2 is recognized for its resilience in contaminated environments, ease of transmission among dogs, and pathogenicity for puppies. Despite the relevance of the virus, complete genome sequences of CPV available at GenBank, to date, are scarce. In the current study, we have developed a methodology to allow the recovery of complete CPV-2 genomes directly from clinical samples. For this, seven fecal samples from Gurupi, Tocantins, North Brazil, were collected from puppies with clinical signals of viral enteritis, and submitted to viral DNA isolation and amplification. Two multiplex PCR strategies were designed including primers targeting fragments of 400 base pairs (bp) and 1,000 bp along the complete genome. Sequencing was performed with the Nanopore® technology and results obtained with the two approaches were compared. Genome assembly revealed that the 400 bp amplicons generated larger numbers of reads, allowing a more reliable coverage of the whole genome than those attained with primers targeting the larger (1000 bp) amplicons. Nevertheless, both enrichment methodologies were efficient in amplification and sequencing. Viral genome sequences were of high quality and allowed more precise typing and subtyping of viral genomes compared to the commonly employed strategy relying solely on the analysis of the VP2 region, which is limited in scope. The CPV-2 genomes recovered in this study belong to the CPV2a and CPV-2c subtypes, closely related to isolates from the neighboring Amazonian region. In conclusion, the technique reported here may contribute to increase the number of full CPV genomes available, which is essential for understanding the genetic mechanisms underlying the evolution and spread of CPV-2.

8.
J Virol Methods ; 320: 114785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516368

RESUMO

Seroprevalence of bovine alphaherpesvirus type 1 (BoAHV1) infections may be contaminated by crossreactive antibodies to bovine alphaherpesvirus type 5 (BoAHV5). To avoid such crossreactivity, an indirect enzyme-linked immunosorbent assay prepared with a recombinant glycoprotein C (gC) antigen (ELISA-gC1) was developed, aiming the detection of antibodies to BoAHV1, with no crossreactivity with BoAHV5 antibodies. The antigen for the ELISA-gC1 was the product of the expression of 219 bp from the N-terminal portion of the BoAHV1 gC gene, which bears low homology between the two virus types. The test was validated on 131 bovine serum samples, including 26 sera from BoAHV1-experimentally immunized, 38 sera from BoAHV5-experimentally infected or immunized calves, and 67 sera from calves seronegative for both BoAHV1 and BoAHV5, as determined by serum neutralization (SN). When compared to SN for BoAHV1, the ELISA-gC1 presented 100% sensitivity, 95.5 % specificity, 100 % negative predictive value, 89.6 % positive predictive value, 98.8 % precision, and a kappa correlation coefficient (κ) 0.95. None of the 38 BoAHV5-seropositive calves was detected by the ELISA-gC1. The ELISA-gC1 proved highly effective for the identification of BoAHV1-positive sera, with no crossreactivity with anti-BoAHV5 antibodies, thus able to distinguish serological responses from BoAHV1- and BoAHV5-seropositive cattle. Its capacity to detect BoAHV1-specific antibodies should allow the determination of the actual BoAHV1 prevalence in herds, which cannot be serologically determined in countries where BoAHV5 is also prevalent due to antibody crossreactivity. Apart from recognizing exclusively BoAHV1-infected cattle, the ELISA-gC1 may also be used in support of BoAHV5 epidemiological studies by allowing the exclusion of BoAHV1-seropositive animals.


Assuntos
Doenças dos Bovinos , Herpesvirus Bovino 1 , Animais , Bovinos , Estudos Soroepidemiológicos , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/veterinária , Valor Preditivo dos Testes , Doenças dos Bovinos/diagnóstico , Sensibilidade e Especificidade
9.
Brain Behav Immun ; 112: 29-41, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37146656

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus associated with several neurodevelopmental outcomes after in utero infection. Here, we studied a congenital ZIKV infection model with immunocompetent Wistar rats, able to predict disabilities and that could pave the way for proposing new effective therapies. We identified neurodevelopmental milestones disabilities in congenital ZIKV animals. Also, on 22nd postnatal day (PND), blood-brain barrier (BBB) proteins disturbances were detected in the hippocampus with immunocontent reduction of ß_Catenin, Occludin and Conexin-43. Besides, oxidative stress imbalance on hippocampus and cortex were identified, without neuronal reduction in these structures. In conclusion, even without pups' microcephaly-like phenotype, congenital ZIKV infection resulted in neurobehavioral dysfunction associated with BBB and oxidative stress disturbances in young rats. Therefore, our findings highlighted the multiple impact of the congenital ZIKV infection on the neurodevelopment, which reinforces the continuity of studies to understand the spectrum of this impairment and to provide support to future treatment development for patients affected by congenital ZIKV.


Assuntos
Doenças Transmissíveis , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Humanos , Gravidez , Feminino , Ratos , Animais , Zika virus/fisiologia , Barreira Hematoencefálica , Ratos Wistar
10.
Braz J Microbiol ; 54(2): 1231-1237, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897516

RESUMO

Water buffaloes (Bubalus bubalis) have been introduced in many regions of the world as a source of animal protein. In many instances, bubaline cattle are reared close to or mixed with bovine or zebuine cattle. However, little is known about infectious diseases of bubaline and the interactions that may arise involving the microbiota of those species. Alphaherpesviruses of ruminants (bovine alphaherpesviruses types 1 and 5, BoHV-1, BoHV-5; bubaline alphaherpesvirus 1, BuHV-1) are highly cross-reactive in serological assays performed with bovine or zebuine sera. However, the profile of reactivity of bubaline cattle sera to alphaherpesviruses remains unknown. As such, it is not known which virus strain (or strains) would be most appropriate to be used as the challenge virus in the laboratory in search for alphaherpesvirus-neutralizing antibodies. In this study, the profile of neutralizing antibodies to alphaherpesviruses in bubaline sera was determined against different types/subtypes of bovine and bubaline alphaherpesviruses. Sera (n=339) were screened in a 24-h serum neutralization test (SN) against 100 TCID50 of each of the challenge viruses. From those, 159 (46.9 %) neutralized at least one of the viruses assayed; 131 (38.6%) sera neutralized the three viral strains used for screening. The viral strain that was neutralized by the largest number of sera was BoHV-5b A663 (149/159; 93.7%). A few sera neutralized only one of the challenge viruses: four sera neutralized BoHV-1 LA only; another neutralized BoHV-5 A663 only and four others neutralized BuHV-1 b6 only. SN testing with two additional strains gave rise to similar results, where maximum sensitivity (defined here as the largest number of sera that neutralized the challenge viruses) was obtained by adding positive results attained with three of the challenge strains. Differences in neutralizing antibody titers were not significant to allow inferences on which would be the most likely virus that induced the antibody responses detected here.


Assuntos
Alphaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Bovinos , Animais , Búfalos , Anticorpos Neutralizantes , Infecções por Herpesviridae/veterinária , Anticorpos Antivirais
11.
Viruses ; 15(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36992466

RESUMO

In recent decades, waves of yellow fever virus (YFV) from the Amazon Rainforest have spread and caused outbreaks in other regions of Brazil, including the Cerrado, a savannah-like biome through which YFV usually moves before arriving at the Atlantic Forest. To identify the vectors involved in the maintenance of the virus in semiarid environments, an entomological survey was conducted after confirmation of yellow fever (YF) epizootics at the peak of the dry season in the Cerrado areas of the state of Minas Gerais. In total, 917 mosquitoes from 13 taxa were collected and tested for the presence of YFV. Interestingly, mosquitoes of the Sabethes genus represented 95% of the diurnal captured specimens, displaying a peak of biting activity never previously recorded, between 4:30 and 5:30 p.m. Molecular analysis identified three YFV-positive pools, two from Sabethes chloropterus-from which near-complete genomes were generated-and one from Sa. albiprivus, whose low viral load prevented sequencing. Sa. chloropterus was considered the primary vector due to the high number of copies of YFV RNA and the high relative abundance detected. Its bionomic characteristics allow its survival in dry places and dry time periods. For the first time in Brazil, Sa. albiprivus was found to be naturally infected with YFV and may have played a role as a secondary vector. Despite its high relative abundance, fewer copies of viral RNA were found, as well as a lower Minimum Infection Rate (MIR). Genomic and phylogeographic analysis showed that the virus clustered in the sub-lineage YFVPA-MG, which circulated in Pará in 2017 and then spread into other regions of the country. The results reported here contribute to the understanding of the epidemiology and mechanisms of YFV dispersion and maintenance, especially in adverse weather conditions. The intense viral circulation, even outside the seasonal period, increases the importance of surveillance and YFV vaccination to protect human populations in affected areas.


Assuntos
Culicidae , Vírus da Febre Amarela , Humanos , Animais , Vírus da Febre Amarela/genética , Estações do Ano , Brasil/epidemiologia , Mosquitos Vetores
12.
Vet Sci ; 10(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851414

RESUMO

Bovine alphaherpesvirus 1 (subtypes 1.1, 1.2a, and 1.2b), type 5 (subtypes 5a, 5b, and 5c), and bubaline herpesvirus 1 (BuHV-1) induce highly, though not fully cross-reactive serological responses. Most types and subtypes of these viruses circulate particularly in countries of the southern hemisphere, notably Brazil and Argentina. Therefore, the detection of infected animals is important in defining prevention and control strategies, particularly when flocks are destined for international trade. Identification of infected herds is most often achieved by assays that detect antibodies, such as enzyme immunoassays (ELISAs). However, to date, no ELISA has been evaluated in its capacity to detect antibodies to these alphaherpesviruses. Here, an ELISA was developed to detect antibodies to all currently recognized BoAHV-1, BoAHV-5, and BuAHV-1 types/subtypes, and its sensitivity and specificity were determined. Six hundred bovine sera were screened in serum neutralization tests (SN) against the seven viruses. ELISAs prepared with each of the viruses were compared to SN. Subsequently, a combined assay with multiple antigens LISA was prepared by mixing five viral antigens, chosen for their highest sensitivity in the preparative assays. In comparison to SN, the mAgELISA sensitivity was 96.5% with 96.1% specificity (κ = 0.93; PPV = 95.0%; NPV = 97.3%). The findings reveal that the mAgELISA developed here is highly suitable for the detection of antibodies, comparable in sensitivity and specificity to that of SN when performed with all known types and subtypes of bovine and bubaline alphaherpesviruses.

13.
Arch Virol ; 168(2): 70, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658439

RESUMO

Zika virus (ZIKV) is an arbovirus that was responsible for multiple outbreaks from 2007 to 2015. It has been linked to cases of microcephaly in Brazil in 2015, among other neurological disorders. Differences among strains might be the reason for different clinical outcomes of infection. To evaluate this hypothesis, we performed a comparative proteomic analysis of Vero cells infected with the African strain MR766 (ZIKVAFR) and the Brazilian strain 17 SM (ZIKVBR). A total of 550 proteins were identified as differentially expressed in ZIKVAFR- or ZIKVBR-infected cells compared to the control. The main findings included upregulation of immune system pathways (neutrophil degranulation and adaptive/innate immune system) and potential activation of immune-system-related pathways by ZIKVAFR (mTOR, JAK-STAT, NF-κB, and others) compared with the ZIKVBR/control. In addition, phagocytosis by macrophages and engulfment of leukocytes were activated in ZIKVAFR infection. An in vivo analysis using an immunocompetent C57BL/6N mouse model identified interstitial pneumonia with neutrophil infiltration in the lungs only in mice infected with ZIKVBR at 48 hours postinfection, with a significant amount of virus detected. Likewise, only animals infected with ZIKVBR had viral material in the cytoplasm of lung macrophages. These results suggest that activation of the immune system by ZIKVAFR infection may lead to faster viral clearance by immune cells.


Assuntos
Evasão da Resposta Imune , Infecção por Zika virus , Zika virus , Animais , Camundongos , Brasil , Chlorocebus aethiops , Camundongos Endogâmicos C57BL , Proteômica , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/imunologia
14.
Braz J Microbiol ; 54(1): 523-529, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36422849

RESUMO

This study aimed to evaluate, by molecular methods, the presence of influenza A virus (IAV) and coronavirus in non-hematophagous bats collected in the state of São Paulo, Brazil. Samples of lung tissue and small intestine from 105 bats belonging to three families (Phyllostomidae, Vespertilionidae, and Molossidae) were collected in 22 municipalities in the state of São Paulo. Genetic identification of bats species was performed by amplification and sequencing of a fragment of 710 bp of the mitochondrial COI gene. In the detection of IAV, genomes were performed by RT-PCR, aiming at the amplification of a 245-bp fragment of the IAV matrix (M) protein gene. For coronaviruses, two fragments of 602 and 440 bp corresponding to segments along the gene encoding the RNA-dependent RNA polymerase (RdRp) were targeted. The detection limit for each of the PCRs was also determined. All samples analyzed here were negative for both viruses, and the lower limit of detection of the PCRs for the amplification of influenza virus A and coronavirus was estimated at 3.5 × 103 and 4.59 genomic copies per microliter, respectively. Although bats have been shown to harbor a large number of pathogens, the results of the present study support the theory that virus circulation in bats in the wild often occurs at low viral loads and that our understanding of the complex infectious dynamics of these viruses in wild conditions is still limited.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Vírus da Influenza A , Humanos , Animais , Brasil , Filogenia
15.
Mem Inst Oswaldo Cruz ; 117: e220127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478156

RESUMO

BACKGROUND: In Brazil, the yellow fever virus (YFV) is maintained in a sylvatic cycle involving wild mosquitoes and non-human primates (NHPs). The virus is endemic to the Amazon region; however, waves of epidemic expansion reaching other Brazilian states sporadically occur, eventually causing spillovers to humans. OBJECTIVES: To report a surveillance effort that led to the first confirmation of YFV in NHPs in the state of Minas Gerais (MG), Southeast region, in 2021. METHODS: A surveillance network was created, encompassing the technology of smartphone applications and coordinated actions of several research institutions and health services to monitor and investigate NHP epizootics. FINDINGS: When alerts were spread through the network, samples from NHPs were collected and YFV infection confirmed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and genome sequencing at an interval of only 10 days. Near-complete genomes were generated using the Nanopore MinION sequencer. Phylogenetic analysis indicated that viral genomes were related to the South American genotype I, clustering with a genome detected in the Amazon region (state of Pará) in 2017, named YFVPA/MG sub-lineage. Fast YFV confirmation potentialised vaccination campaigns. MAIN CONCLUSIONS: A new YFV introduction was detected in MG 6 years after the beginning of the major outbreak reported in the state (2015-2018). The YFV strain was not related to the sub-lineages previously reported in MG. No human cases have been reported, suggesting the importance of coordinated surveillance of NHPs using available technologies and supporting laboratories to ensure a quick response and implementation of contingency measures to avoid YFV spillover to humans.


Assuntos
Vírus da Febre Amarela , Vírus da Febre Amarela/genética , Filogenia , Brasil/epidemiologia
16.
Viruses ; 14(10)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298867

RESUMO

The chikungunya virus (CHIKV) is a mosquito-borne virus of the family Togaviridae transmitted to humans by Aedes spp. mosquitoes. In Brazil, imported cases have been reported since June 2014 through two independent introductions, one caused by Asian Lineage in Oiapoque, Amapá state, North Region, and another caused by East/Central/South African (ECSA) in Feira de Santana, Bahia state, Northeast Region. Moreover, there is still limited information about the genomic epidemiology of the CHIKV from surveillance studies. The Tocantins state, located in Northern Brazil, reported an increase in the number of CHIKV cases at the end of 2021 and the beginning of 2022. Thus, to better understand the dispersion dynamics of this viral pathogen in the state, we generated 27 near-complete CHIKV genome sequences from four cities, obtained from clinical samples. Our results showed that the newly CHIKV genomes from Tocantins belonged to the ECSA lineage. Phylogenetic reconstruction revealed that Tocantins' strains formed a single well-supported clade, which appear to be closely related to isolates from the Rio Grande do Norte state (Northeast Brazil) and the Rio de Janeiro state (Southeast Brazil), that experienced an explosive ECSA epidemic between 2016-2019. Mutation analyses showed eleven frequent non-synonymous mutations in the structural and non-structural proteins, indicating the autochthonous transmission of the CHIKV in the state. None of the genomes recovered within the Tocantins samples carry the A226V mutation in the E1 protein associated with increased transmission in A. albopictus. The study presented here highlights the importance of continued genomic surveillance to provide information not only on recording mutations along the viral genome but as a molecular surveillance tool to trace virus spread within the country, to predict events of likely occurrence of new infections, and, as such, contribute to an improved public health service.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Brasil/epidemiologia , Filogenia , África do Sul , Genômica , Genótipo , Surtos de Doenças
17.
Pathogens ; 11(10)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36297224

RESUMO

The genus Orthopoxvirus (OPXV) of the family Poxviridae comprises several viruses that are capable of infecting a wide range of hosts. One of the most widespread OPXVs is the Vaccinia virus (VACV), which circulates in zoonotic cycles in South America, especially in Brazil, infecting domestic and wild animals and humans and causing economic losses as well as impacting public health. Despite this, little is known about the presence and/or exposure of neotropical primates to orthopoxviruses in the country. In this study, we report the results of a search for evidence of OPVX infections in neotropical free-living primates in the state of Minas Gerais, southeast Brazil. The sera or liver tissues of 63 neotropical primates were examined through plaque reduction neutralization tests (PRNT) and real-time PCR. OPXV-specific neutralizing antibodies were detected in two sera (4.5%) from Callithrix penicillata, showing 55% and 85% reduction in plaque counts, evidencing their previous exposure to the virus. Both individuals were collected in urban areas. All real-time PCR assays were negative. This is the first time that evidence of OPXV exposure has been detected in C. penicillata, a species that usually lives at the interface between cities and forests, increasing risks of zoonotic transmissions through spillover/spillback events. In this way, studies on the circulation of OPXV in neotropical free-living primates are necessary, especially now, with the monkeypox virus being detected in new regions of the planet.

18.
Transbound Emerg Dis ; 69(6): 3449-3456, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070102

RESUMO

Rabies is an encephalitis caused by rabies virus, whose transmission occurs upon contact with infected animals' saliva. The diagnosis is usually performed post-mortem through a direct fluorescent antibody test (DFAT). If the DFAT results are negative, they must be confirmed with an isolation test, usually the mouse inoculation test (MIT), which implies the suffering and death of the animals, high costs and most importantly, up to 28 days to confirm a negative result. Another issue related to rabies diagnosis is the sample collection and storage, which is critical for the rabies virus' RNA genome. Thus, this study aimed to evaluate (i) reverse transcriptase polymerase chain reaction (RT-PCR) and Rabies Tissue Culture Infection Tests (RTCIT) in comparison to DFAT and MIT and (ii) FTA® cards as an alternative sample collection and preservation method. Eighty animal samples were evaluated through DFAT, RTCIT and RT-PCR; MIT was performed only in DFAT-negative samples. FTA® cards were evaluated with a subset of 64 samples, with sufficient material for imprinting. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV), agreement and Cohen's kappa were calculated for each test combination. RTCIT had higher sensitivity (92.5%) and RT-PCR had higher specificity (92.3%) compared to DFAT. The combination of tests enhanced sensitivity, NPV and Cohen's kappa (considering positive results by RTCIT or RT-PCR), and specificity and PPV (when both tests were concordant). The PCR based on FTA® cards as sample source was specific (84.6%-96.2%) but presented lower sensitivity (29.7%-73.0%), although it could detect as positive four DFAT-negative samples. RTCIT and RT-PCR may be used as confirmatory tests in DFAT-negative samples. Moreover, FTA® cards may be helpful for sample collection in field situations where a long time is needed until the sample undergoes laboratory testing.


Assuntos
Vírus da Raiva , Raiva , Doenças dos Roedores , Animais , Camundongos , Raiva/diagnóstico , Raiva/veterinária , Reação em Cadeia da Polimerase/veterinária , Manejo de Espécimes/veterinária , RNA Viral/análise , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
19.
Bionanoscience ; 12(4): 1166-1171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967762

RESUMO

Quillaja saponins have an intrinsic capacity to interact with membrane lipids that self-assembles in nanoparticles (immunostimulating complexes or ISCOM-matrices) with outstanding immunoadjuvant activity and low toxicity profile. However, the expensive and laborious purification processes applied to purify Quillaja saponins used to assemble ISCOM-matrices show an important drawback in the large-scale use of this vaccine adjuvant. Thus, in this study, we describe a protocol to appropriately formulate ISCOM-matrices using the raw aqueous extract (AE) of Quillaja lancifolia leaves. In the presence of lipids, AE was able to self-assemble in nanostructures that resembles immunostimulating complexes (ISCOM). These negatively charged nanoparticles of approximately 40 nm were characterized by transmission electron microscopy and dynamic light scattering. In addition, well-known saponins with remarkable immunoadjuvant activity, as QS-21, were detected into nanoparticles. Thus, the easier, robust, cheaper, and environmentally friendly method developed here may be an alternative to the classical methods for ISCOM-matrices production that use high-purified saponins.

20.
Prev Vet Med ; 206: 105698, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809462

RESUMO

Wild boar (Sus scrofa) is an exotic invasive species in Brazil and may be a reservoir for several pathogens, including those related to the porcine respiratory disease complex (PRDC), a critical infectious disease in pig production. The objective of this study was to investigate viral and bacterial pathogens related to PRDC in free-living wild boars from Brazil. Eighty animals were examined in search of genomes of porcine circovirus 2 (PCV2), Torque teno Sus virus 1a (TTSuV1a) and 1b (TTSuV1b), Influenza A virus (IAV), Actinobacillus pleuropneumoniae, Glaesserella parasuis, Pasteurella multocida, and Mycoplasma hyopneumoniae. The results demonstrated that 57.5% (46/80) of the animals had at least one detected pathogen, and 11.3% of them (9/80) were co-infected. TTSuV1a was the most prevalent genome, for which risk factors were associated with increased contact between wild boars and other animals. The other pathogens were detected at much lower frequencies or not detected (M. hyopneumoniae and IAV). An additional IAV serology search identified H1N1pdm09 antibodies in 35.5% (16/45) of the wild boars, bringing concern related to public health. In conclusion, wild boars are infected with pathogens that cause swine diseases, so their eventual contact with domestic pigs might risk animal production in Brazil.


Assuntos
Circovirus , Mycoplasma hyopneumoniae , Doenças dos Suínos , Animais , Anticorpos Antivirais , Brasil/epidemiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA