Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077082

RESUMO

Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. Foxp2 is a marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1 fl/fl ). Male and female Foxp2-Cre/Oprm1 fl/fl mice were generated and heterozygous Cre+ (knockout) and homozygous Cre-(control) animals were tested for aversion-resistant alcohol consumption using an intermittent access (IA) task, operant responding for a sucrose reward, conditioned place aversion (CPA) to morphine withdrawal, and locomotor sensitization to morphine. In IA, mice with the MOR-knockout were more sensitive to quinine-adulterated ethanol (EtOH) and less aversion-resistant, as they decreased EtOH consumption from baseline at all quinine concentrations, while control animals did not. In operant conditioning, Cre+ mice similarly exhibited less aversion-resistant reward seeking than Cre-mice when sucrose was adulterated with quinine. For CPA, both control and MOR-knockout mice demonstrated withdrawal-induced aversion. For locomotor sensitization, Cre+ mice demonstrated decreased locomotion following morphine injection compared to Cre-mice. The results of these studies suggest that MOR expression on Foxp2-expressing neurons is not necessary for rewarded behaviors or expression of opioid withdrawal but may be involved in aversion-resistance.

2.
Sci Data ; 10(1): 253, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137926

RESUMO

Knowledge of species' functional traits is essential for understanding biodiversity patterns, predicting the impacts of global environmental changes, and assessing the efficiency of conservation measures. Bats are major components of mammalian diversity and occupy a variety of ecological niches and geographic distributions. However, an extensive compilation of their functional traits and ecological attributes is still missing. Here we present EuroBaTrait 1.0, the most comprehensive and up-to-date trait dataset covering 47 European bat species. The dataset includes data on 118 traits including genetic composition, physiology, morphology, acoustic signature, climatic associations, foraging habitat, roost type, diet, spatial behaviour, life history, pathogens, phenology, and distribution. We compiled the bat trait data obtained from three main sources: (i) a systematic literature and dataset search, (ii) unpublished data from European bat experts, and (iii) observations from large-scale monitoring programs. EuroBaTrait is designed to provide an important data source for comparative and trait-based analyses at the species or community level. The dataset also exposes knowledge gaps in species, geographic and trait coverage, highlighting priorities for future data collection.


Assuntos
Quirópteros , Animais , Biodiversidade , Quirópteros/fisiologia , Ecossistema , Europa (Continente) , Mamíferos
3.
Sci Total Environ ; 866: 161404, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621471

RESUMO

Wind turbine development is growing exponentially and faster than other sources of renewable energy worldwide. While multi-turbine facilities have small physical footprint, they are not free from negative impacts on wildlife. This is particularly true for bats, whose population viability can be threatened by wind turbines through mortality events due to collisions. Wind turbine curtailment (hereafter referred to as "blanket curtailment") in non-winter periods at low wind speeds and mild temperatures (i.e. when bats are active and wind energy production is low) can reduce fatalities, but show variable and incomplete effectiveness because other factors affect fatality risks including landscape features, rain, turbine functioning, and seasonality. The combined effects of these drivers, and their potential as criteria in algorithm-based curtailment, have so far received little attention. We compiled bat acoustic data recorded over four years at 34 wind turbine nacelles in France from post-construction regulatory studies, including 8619 entire nights (251 ± 58 nights per wind turbine on average). We modelled nightly bat activity in relation to its multiple drivers for three bat guilds, and assessed whether curtailment based on algorithm would be more efficient to limit bat exposure than blanket curtailment based on various combinations of unique wind speed and temperature thresholds. We found that landscape features, weather conditions, seasonality, and turbine functioning determine bat activity at nacelles. Algorithm-based curtailment is more efficient than blanket curtailment, and has the potential to drastically reduce bat exposure while sustaining the same energy production. Compared to blanket curtailment, the algorithm curtailment reduces average exposure by 20 to 29 % and 7 to 12 % for the high-risk guilds of long- and mid-range echolocators, and by 24 to 31 % for the low-risk guild of short-range echolocators. These findings call for the use of algorithm curtailment as both power production and biodiversity benefits will be higher in most situations.


Assuntos
Migração Animal , Quirópteros , Animais , Animais Selvagens , Algoritmos , França
4.
Acta amaz ; 50(4): 327-334, out. - dez. 2020.
Artigo em Inglês | LILACS | ID: biblio-1146375

RESUMO

la literatura científica no encontramos información muy detallada sobre especies de murciélago esquivas como las de la família Molossidae. Esta carencia condiciona y obstaculiza los esfuerzos de conservación tanto a escala local como global. El desarrollo reciente de nuevas tecnologías diseñadas específicamente para muestrear quirópteros, como los detectores de ultrasonidos pasivos o los reclamos acústicos mediante el uso de llamadas de alta frecuencia, ha incrementado nuestro conocimiento sobre su ecología y distribución. Además, ha permitido a los investigadores obtener nuevos datos que eran prácticamente imposibles de conseguir en el pasado. Llevamos a cabo una evaluación rápida de diversidad quiropterológica en la Guayana Francesa, utilizando reclamos cústicos con el objetivo de capturar especies insectívoras de vuelo alto. En este estudio, aportamos la segunda y tercera captura de Promops centralis (Chiroptera, Molossidae) para Guayana Francesa después de 28 años desde sus primeras y únicas capturas hasta ahora. Uno de los indivíduos capturados fue una hembra poslactante, el primer registro de reproducción de la especie. Aportamos (i) datos morfométricos, bioacústicos (incluyendo las llamadas de alarma típicas de la especie) y fotografías de detalles para facilitarsu identificación; y (ii) las secuencias de COI y CytB de los dos individuos (las primeras secuencias mitocondriales para la Guayana Francesa). (AU)


Assuntos
Quirópteros , Ecossistema Amazônico , Mitocôndrias
5.
J Acoust Soc Am ; 145(5): 3242, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31153342

RESUMO

The use of echolocation allows insectivorous bats to access unique foraging niches by locating obstacles and prey with ultrasounds in complete darkness. To avoid interspecific competition, it is likely that sonar features and wing morphology co-evolved with species vertical distribution, but due to the technical difficulties of studying flight in the vertical dimension, this has never been demonstrated with empirical measurements. The authors equipped 48 wind masts with arrays of two microphones and located the vertical distribution of a community of 19 bat species and two species groups over their annual activity period (>8000 nights). The authors tested the correlation between the proportion of flights at height and the acoustic features of bat calls as well as their wing morphology. The authors found that call peak frequency and bandwidth are good predictors of bat use of the vertical space regardless of their acoustic strategies (i.e., gleaning, hawking, or detecting prey flutter). High wing aspect ratios and high wing loadings were associated with high proportions of time spent at height, confirming hypotheses from the literature.


Assuntos
Quirópteros/anatomia & histologia , Ecolocação/fisiologia , Voo Animal/fisiologia , Comportamento Predatório/fisiologia , Acústica , Animais , Som , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA