Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Small ; : e2400745, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804826

RESUMO

Producing heterostructures of cesium lead halide perovskites and metal-chalcogenides in the form of colloidal nanocrystals can improve their optical features and stability, and also govern the recombination of charge carriers. Herein, the synthesis of red-emitting CsPbI3/ZnSe nanoheterostructures is reported via an in situ hot injection method, which provides the crystallization conditions for both components, subsequently leading to heteroepitaxial growth. Steady-state absorption and photoluminescence studies alongside X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy analysis evidence on a type-I band alignment for CsPbI3/ZnSe nanoheterostructures, which exhibit photoluminescence quantum yield of 96% due to the effective passivation of surface defects, and an enhancement in carrier lifetime. Furthermore, the heterostructure growth of ZnSe domains leads to significant improvement in the stability of the CsPbI3 nanocrystals under ambient conditions and against thermal and UV irradiation stress.

2.
Light Sci Appl ; 13(1): 111, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734686

RESUMO

Quantum-confined CsPbBr3 perovskites are promising blue emitters for ultra-high-definition displays, but their soft lattice caused by highly ionic nature has a limited stability. Here, we endow CsPbBr3 nanoplatelets (NPLs) with atomic crystal-like structural rigidity through proper surface engineering, by using strongly bound N-dodecylbenzene sulfonic acid (DBSA). A stable, rigid crystal structure, as well as uniform, orderly-arranged surface of these NPLs is achieved by optimizing intermediate reaction stage, by switching from molecular clusters to mono-octahedra, while interaction with DBSA resulted in formation of a CsxO monolayer shell capping the NPL surface. As a result, both structural and optical stability of the CsPbBr3 NPLs is enhanced by strong covalent bonding of DBSA, which inhibits undesired phase transitions and decomposition of the perovskite phase potentially caused by ligand desorption. Moreover, rather small amount of DBSA ligands at the NPL surface results in a short inter-NPL spacing in their closely-packed films, which facilitates efficient charge injection and transport. Blue photoluminescence of the produced CsPbBr3 NPLs is bright (nearly unity emission quantum yield) and peaks at 457 nm with an extremely narrow bandwidth of 3.7 nm at 80 K, while the bandwidth of the electroluminescence (peaked at 460 nm) also reaches a record-narrow value of 15 nm at room temperature. This value corresponds to the CIE coordinates of (0.141, 0.062), which meets Rec. 2020 standards for ultra-high-definition displays.

3.
Nanoscale ; 16(18): 9011-9020, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623897

RESUMO

Nonlinear absorption of metal-halide perovskite nanocrystals (NCs) makes them an ideal candidate for applications which require multiphoton-excited photoluminescence. By doping perovskite NCs with lanthanides, their emission can be extended into the near-infrared (NIR) spectral region. We demonstrate how the combination of Yb3+ doping and bandgap engineering of cesium lead halide perovskite NCs performed by anion exchange (from Cl- to Br-) leads to efficient and tunable emitters that operate under two-photon excitation in the NIR spectral region. By optimizing the anion composition, Yb3+-doped CsPbClxBr3-x NCs exhibited high values of two-photon absorption cross-section reaching 2.3 × 105 GM, and displayed dual-band emission located both in the visible (407-493 nm) and NIR (985 nm). With a view of practical applications of bio-visualisation in the NIR spectral range, these NCs were embedded into silica microspheres which were further wrapped with amphiphilic polymer shells to ensure their water-compatibility. The resulting microspheres with embedded NCs could be easily dispersed in both toluene and water, while still exhibiting a dual-band emission in visible and NIR under both one- and two-photon excitation conditions.

4.
Angew Chem Int Ed Engl ; 63(26): e202403996, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38679568

RESUMO

Decreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade-off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4- octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color-saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n-doped emitters convert into only slightly n-doped ones; this boosts the charge injection efficiency of the corresponding light-emitting diodes. The light-emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A-1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color-saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.

5.
Nano Lett ; 24(11): 3347-3354, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451030

RESUMO

Understanding the photosensitization mechanisms in Yb3+-doped perovskite nanocrystals is crucial for developing their anticipated photonic applications. Here, we address this question by investigating near-infrared photoluminescence of Yb3+-doped mixed-halide CsPbClxBr3-x nanocrystals as a function of temperature and revealing its strong dependence on the stoichiometry of the host perovskite matrix. To explain the observed experimental trends, we developed a theoretical model in which energy transfer from the perovskite matrix to Yb3+ ions occurs through intermediate trap states situated beneath the conduction band of the host. The developed model provides an excellent agreement with experimental results and is further validated through the measurements of emission saturation at high excitation powers and near-infrared photoluminescence quantum yield as a function of the anion composition. Our findings establish trap-mediated energy transfer as a dominant photosensitization mechanism in Yb3+-doped CsPbClxBr3-x nanocrystals and open up new ways of engineering their optical properties for light-emitting and light-harvesting applications.

6.
Small ; : e2310402, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342667

RESUMO

Functional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches. Here, the dataset on synthetic parameters and optical properties of one important class of light-emitting nanomaterials - carbon dots are collected, processed, and analyzed with optical transitions in the red and near-infrared spectral ranges. A model for prediction of spectral characteristics of these carbon dots based on multiple linear regression is established and verified by comparison of the predicted and experimentally observed optical properties of carbon dots synthesized in three different laboratories. Based on the analysis, the open-source code is provided to be used by researchers for the prediction of optical properties of carbon dots and their synthetic procedures.

7.
ACS Nano ; 18(5): 4256-4268, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38265044

RESUMO

Dual-atom catalytic sites on conductive substrates offer a promising opportunity for accelerating the kinetics of multistep hydrogen and oxygen evolution reactions (HER and OER, respectively). Using MXenes as substrates is a promising strategy for depositing those dual-atom electrocatalysts, if the efficient surface anchoring strategy ensuring metal-substrate interactions and sufficient mass loading is established. We introduce a surface-modification strategy of MXene substrates by preadsorbing L-tryptophan molecules, which enabled attachment of dual-atom Co/Ni electrocatalyst at the surface of Ti3C2Tx by forming N-Co/Ni-O bonds, with mass loading reaching as high as 5.6 wt %. The electron delocalization resulting from terminated O atoms on MXene substrates, N atoms in L-tryptophan anchoring moieties, and catalytic metal atoms Co and Ni provides an optimal adsorption strength of intermediates and boosts the HER and OER kinetics, thereby notably promoting the intrinsic activity of the electrocatalyst. CoNi-Ti3C2Tx electrocatalyst displayed HER and OER overpotentials of 31 and 241 mV at 10 mA cm-2, respectively. Importantly, the CoNi-Ti3C2Tx electrocatalyst also exhibited high operational stability for both OER and HER over 100 h at an industrially relevant current density of 500 mA cm-2. Our study provided guidance for constructing dual-atom active metal sites on MXene substrates to synergistically enhance the electrochemical efficiency and stability of the energy conversion and storage systems.

8.
Nano Lett ; 24(8): 2488-2495, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38198618

RESUMO

Electromagnetic chirality transfer represents an effective means of the nanoscale manipulation of optical chirality. While most of the previous reports have exclusively focused on the circular dichroism (CD) transfer from UV-responsive chiral molecules toward visible-resonant achiral colloidal nanoparticles, here we demonstrate a reverse process in which plasmonic chirality can be transferred to achiral molecules, either upward from visible to UV or downward from visible to near infrared (NIR). By hybridizing achiral UV- or NIR-responsive dye molecules with chiral metal nanoparticles in solution, we observe a chiral-plasmon-induced CD (CPICD) signal at the intrinsically achiral molecular absorption bands. Full-wave electromagnetic modeling reveals that both near-field Coulomb interaction and far-field radiative coupling contribute to the observed CPICD, indicating that the mechanism considered here is universal for different material systems and types of optical resonances. Our study provides a set of design guidelines for broadband nanophotonic chiral sensing from the UV to NIR spectral regime.

9.
J Phys Chem Lett ; 15(2): 540-548, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38197909

RESUMO

Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.

10.
Small ; 20(25): e2311639, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38204283

RESUMO

The development of ultraviolet circularly polarized light (UVCPL) sources has the potential to benefit plenty of practical applications but remains a challenge due to limitations in available material systems and a limited understanding of the excited state chirality transfer. Herein, by constructing hybrid structures of the chiral perovskite CsPbBr3 nanoplatelets and organic molecules, excited state chirality transfer is achieved, either via direct binding or triplet energy transfer, leading to efficient UVCPL emission. The underlying photophysical mechanisms of these two scenarios are clarified by comprehensive optical studies. Intriguingly, UVCPL realized via the triple energy transfer, followed by the triplet-triplet annihilation upconversion processes, demonstrates a 50-fold enhanced dissymmetry factor glum. Furthermore, stereoselective photopolymerization of diacetylene monomer is demonstrated by using such efficient UVCPL. This study provides both novel insights and a practical approach for realizing UVCPL, which can also be extended to other material systems and spectral regions, such as visible and near-infrared.

11.
Adv Mater ; 36(4): e2304557, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37587645

RESUMO

Although conversion-type iodine-based batteries are considered promising for energy storage systems, stable electrode materials are scarce, especially for high-performance multi-electron reactions. The use of tin-based iodine-rich 2D Dion-Jacobson (DJ) ODASnI4 (ODA: 1,8-octanediamine) perovskite materials as cathode materials for iodine-based batteries is suggested. As a proof of concept, organic lithium-perovskite and aqueous zinc-perovskite batteries are fabricated and they can be operated based on the conventional one-electron and advanced two-electron transfer modes. The active elemental iodine in the perovskite cathode provides capacity through a reversible I- /I+ redox pair conversion at full depth, and the rapid electron injection/extraction leads to excellent reaction kinetics. Consequently, high discharge plateaus (1.71 V vs Zn2+ /Zn; 3.41 V vs Li+ /Li), large capacity (421 mAh g-1 I ), and a low decay rate (1.74 mV mAh-1 g-1 I ) are achieved for lithium and zinc ion batteries, respectively. This study demonstrates the promising potential of perovskite materials for high-performance metal-iodine batteries. Their reactions based on the two-electron transfer mechanism shed light on similar battery systems aiming for decent operational stability and high energy density.

12.
Small ; : e2307972, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072787

RESUMO

Metal halide perovskites with excellent optical and electronic properties have become a trending material in the current research. However, their limited stability under ambient conditions degrades quality and threatens their potential commercialization as optoelectronic devices. Various approaches are adopted to improve the stability of perovskite nanocrystals (PeNC) while maintaining their advantageous optical properties, particularly strong luminescence. Among different possible improvement strategies, encapsulation of PeNCs within the amorphous glass matrices of inorganic oxides has drawn widespread attention because it ensures high resistance against chemical corrosion and high temperature, thus enhancing their chemical, thermal, and mechanical stability with improved light-emission characteristics. In this article, two types of materials, namely all-inorganic metal halide PeNCs and amorphous oxide glasses are briefly introduced, and then the methods are reviewed to fabricate and improve the quality of PeNC@glass composites. These methods are classified into three universal categories: compositional modification, structural modification, and dual encapsulation. In the final part of this review paper, examples of applications of PeNCs@glass composites in light-emitting devices and displays, data storage and anti-counterfeiting, lasing, photodetectors and X-ray detectors, photocatalysis, optical filters, solar concentrators, and batteries are provided.

13.
Adv Mater ; : e2306518, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572367

RESUMO

A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange. The charge carrier diffusion length can be extended from 50 to 90 nm when the device active area consists of a bi-layer of cation-rich HgTe QDs capped with DMTD and FMT, respectively. As a result, the responsivity under 1340 nm illumination is boosted to 1 AW-1 at zero bias and up to 40 AW-1 under -1 V bias at room temperature. Due to high noise current density, the specific detectivity of these photodetectors reaches up to 1010 Jones at room temperature and under an inert atmosphere. Meanwhile, high photoconductive gain ensures a rise in the external quantum efficiency of up to 1000% under reverse bias.

14.
ACS Appl Mater Interfaces ; 15(22): 27307-27315, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218600

RESUMO

Organic-inorganic (hybrid) metal halide perovskites (MHPs) incorporating chiral organic ligand molecules are naturally sensitive to left- and right-handed circular polarized light, potentially enabling selective circular polarized photodetection. Here, the photoresponses in chiral MHP polycrystalline thin films made of ((S)-(-)-α-methyl benzylamine)2PbI4 and ((R)-(+)-α-methyl benzylamine)2PbI4, denoted as (S-MBA)2 PbI4 and (R-MBA)2PbI4, respectively, are investigated by employing a thin-film field-effect transistor (FET) configuration. The left-hand-sensitive films made of (S-MBA)2PbI4 perovskite show higher photocurrent under left-handed circularly polarized (LCP) light than under right-handed circularly polarized (RCP) illumination under otherwise identical conditions. Conversely, the right-hand-sensitive films made of (R-MBA)2PbI4 are more sensitive to RCP than LCP illumination over a wide temperature range of 77-300 K. Furthermore, based on FET measurements, we found evidence of two different carrier transport mechanisms with two distinct activation energies in the 77-260 and 280-300 K temperature ranges, respectively. In the former temperature range, shallow traps are dominant in the perovskite film, which are filled by thermally activated carriers with increasing temperature; in the latter temperature range, deep traps with one order of magnitude larger activation energy dominate. Both types of chiral MHPs show intrinsic p-type carrier transport behavior regardless of the handedness (S or R) of these materials. The optimal carrier mobility for both handedness of material is around (2.7 ± 0.2) × 10-7 cm2 V-1 s-1 at 270-280 K, which is two magnitudes larger than those reported in nonchiral perovskite MAPbI3 polycrystalline thin films. These findings suggest that chiral MHPs can be an excellent candidate for selective circular polarized photodetection applications, without additional polarizing optical components, enabling simplified construction of detection systems.

15.
ACS Nano ; 17(10): 9290-9301, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37126487

RESUMO

Orthorhombic γ-CsPbI3 possesses the highest structural stability among the optically active (light-emissive) CsPbI3 perovskites. Here, we make use of a seed-assisted heteroepitaxial growth to fabricate seed/core/shell CaIx/γ-CsPbI3/CaI2 nanocrystals. Ultrasmall CaIx nanoparticles serve as seeds to template the Pb-centered octahedral arrangement which enables the formation of the γ-CsPbI3 phase and at the same time inhibit lattice strain by blocking the force transfer that otherwise leads to an octahedral twist and so improve the structural stability of the resulting nanocrystals. An outer shell composed from the same material, CaI2, isolates the formed γ-CsPbI3 nanocrystals from the environment, which also significantly improves their stability under ambient conditions. Optical and electrical studies indicate that the seed/core/shell CaIx/γ-CsPbI3/CaI2 structure possesses a shallower set of trap states as compared to cubic α-CsPbI3 nanocrystals. Light-emitting diodes utilizing these γ-CsPbI3 nanocrystals show a record high external quantum efficiency of 25.3%, high brightness of over 13600 cd/m2, and an operational lifetime of ∼14 h before reaching 50% of their initial luminance. These devices can repeatedly be illuminated over 650 times at ∼500 cd/m2 with no decline of brightness, which indicates their great commercial potential.

16.
Nanoscale ; 15(19): 8845-8853, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37114916

RESUMO

Chemically synthesized carbon dots (CDs) have attracted a lot of attention as an eco-friendly and cost-efficient light-emitting material, and functionalization of CD surfaces with additives of different natures is a useful way to control their properties. In this study, we show how a post-synthetic treatment of CDs with citric acid, benzoic acid, urea and o-phenylenediamine changes their chemical composition and optical properties. In particular, it results in the formation of carboxyl/imide/carbonyl groups at the CD surface, leading to the appearance of additional blue (or for CDs treated with phenylenediamine, blue and green) emissive optical centers on top of the remaining emission from the original CDs. Most importantly, the increased oxidation degree alongside a decreased relative amount of carbon and nitrogen in such treated CDs decreases their highest occupied molecular orbital (HOMO) energy level by up to 0.9 eV (the maximal value was observed for CDs treated with o-phenylenediamine). Moreover, the Fermi energy level shifted above the lowest unoccupied molecular orbital (LUMO) energy level for some of the treated CD samples. Thus, the energy structure of CDs can be tuned and optimized for further applications through the functionalization of their surface with organic additives.

17.
Nanoscale ; 15(14): 6476-6504, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36960839

RESUMO

Commercial infrared (IR) photodetectors based on epitaxial growth inorganic semiconductors, e.g. InGaAs and HgCdTe, suffer from high fabrication cost, poor compatibility with silicon integrated circuits, rigid substrates and bulky cooling systems, which leaves a large development window for the emerging solution-processable semiconductor-based photo-sensing devices. Among the solution-processable semiconductors, mercury (Hg) chalcogenide colloidal quantum dots (QDs) exhibit unique ultra-broad and tuneable photo-responses in the short-wave infrared to far-wave infrared range, and have demonstrated photo-sensing abilities comparable to the commercial products, especially with advances in high operation temperature. Here, we provide a focused review on photodetectors employing Hg chalcogenide colloidal QDs, with a comprehensive summary of the essential progress in the areas of synthesis methods of QDs, property control, device engineering, focus plane array integration, etc. Besides imaging demonstrations, a series of Hg chalcogenide QD photodetector based flexible, integrated, multi-functional applications are also summarized. This review shows prospects for the next-generation low-cost highly-sensitive and compact IR photodetectors based on solution-processable Hg chalcogenide colloidal QDs.

18.
Nanomaterials (Basel) ; 13(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839112

RESUMO

Lead-halide perovskite nanocrystals are an attractive class of materials since they can be easily fabricated, their optical properties can be tuned all over the visible spectral range, and they possess high emission quantum yields and narrow photoluminescence linewidths. Doping perovskites with lanthanides is one of the ways to widen the spectral range of their emission, making them attractive for further applications. Herein, we summarize the recent progress in the synthesis of ytterbium-doped perovskite nanocrystals in terms of the varying synthesis parameters such as temperature, ligand molar ratio, ytterbium precursor type, and dopant content. We further consider the dependence of morphology (size and ytterbium content) and optical parameters (photoluminescence quantum yield in visible and near-infrared spectral ranges) on the synthesis parameters. The developed open-source code approximates those dependencies as multiple-parameter linear regression and allows us to estimate the value of the photoluminescence quantum yield from the parameters of the perovskite synthesis. Further use and promotion of an open-source database will expand the possibilities of the developed code to predict the synthesis protocols for doped perovskite nanocrystals.

20.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677976

RESUMO

Carbon dots can be used for the fabrication of colloidal multi-purpose complexes for sensing and bio-visualization due to their easy and scalable synthesis, control of their spectral responses over a wide spectral range, and possibility of surface functionalization to meet the application task. Here, we developed a chemical protocol of colloidal complex formation via covalent bonding between carbon dots and plasmonic metal nanoparticles in order to influence and improve their fluorescence. We demonstrate how interactions between carbon dots and metal nanoparticles in the formed complexes, and thus their optical responses, depend on the type of bonds between particles, the architecture of the complexes, and the degree of overlapping of absorption and emission of carbon dots with the plasmon resonance of metals. For the most optimized architecture, emission enhancement reaching up to 5.4- and 4.9-fold for complexes with silver and gold nanoparticles has been achieved, respectively. Our study expands the toolkit of functional materials based on carbon dots for applications in photonics and biomedicine to photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA