Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39314270

RESUMO

Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear. Here we use 2-photon Ca2+ imaging in awake head-fixed mice to determine how the higher-order "shell" layers of the inferior colliculus (IC) encode sound source location in the frontal azimuth, under binaural conditions and after acute monaural hearing loss induced by an ear plug ipsilateral to the imaged hemisphere. Spatial receptive fields were typically broad and not exclusively contralateral: Neurons responded reliably to multiple positions in the contra- and ipsi-lateral hemifields, with preferred positions tiling the entire frontal azimuth. Ear plugging broadened receptive fields and reduced spatial selectivity in a subset of neurons, in agreement with an inhibitory influence of ipsilateral sounds. However ear plugging also enhanced spatial tuning and/or unmasked receptive fields in other neurons, shifting the distribution of preferred angles ipsilaterally with minimal impact on the neuronal population's overall spatial resolution; these effects occurred within 2 hours of ear plugging. Consequently, linear classifiers trained on fluorescence data from control and ear-plugged conditions had similar classification accuracy when tested on held out data from within, but not across hearing conditions. Spatially informative neuronal population codes therefore arise rapidly following monaural hearing loss, in absence of overt experience.

2.
J Neurosci ; 44(30)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918064

RESUMO

Linking sensory input and its consequences is a fundamental brain operation. During behavior, the neural activity of neocortical and limbic systems often reflects dynamic combinations of sensory and task-dependent variables, and these "mixed representations" are suggested to be important for perception, learning, and plasticity. However, the extent to which such integrative computations might occur outside of the forebrain is less clear. Here, we conduct cellular-resolution two-photon Ca2+ imaging in the superficial "shell" layers of the inferior colliculus (IC), as head-fixed mice of either sex perform a reward-based psychometric auditory task. We find that the activity of individual shell IC neurons jointly reflects auditory cues, mice's actions, and behavioral trial outcomes, such that trajectories of neural population activity diverge depending on mice's behavioral choice. Consequently, simple classifier models trained on shell IC neuron activity can predict trial-by-trial outcomes, even when training data are restricted to neural activity occurring prior to mice's instrumental actions. Thus, in behaving mice, auditory midbrain neurons transmit a population code that reflects a joint representation of sound, actions, and task-dependent variables.


Assuntos
Percepção Auditiva , Colículos Inferiores , Animais , Camundongos , Masculino , Colículos Inferiores/fisiologia , Feminino , Percepção Auditiva/fisiologia , Estimulação Acústica/métodos , Mesencéfalo/fisiologia , Vias Auditivas/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Recompensa
3.
J Neurophysiol ; 131(5): 842-864, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38505907

RESUMO

The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's nonlemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and nonprimary auditory cortices, forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here, we use two-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset was highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ∼0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.NEW & NOTEWORTHY The IC's shell layers originate a "nonlemniscal" pathway important for perceiving vocalization sounds. However, prior studies suggest that individual shell IC neurons are broadly tuned and have high response thresholds, implying a limited reliability of efferent signals. Using Ca2+ imaging, we show that amplitude modulation is accurately represented in the population activity of shell IC neurons. Thus, downstream targets can read out sounds' temporal envelopes from distributed rate codes transmitted by populations of broadly tuned neurons.


Assuntos
Percepção Auditiva , Colículos Inferiores , Neurônios , Colículos Inferiores/fisiologia , Animais , Camundongos , Masculino , Feminino , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Estimulação Acústica , Redes Neurais de Computação
4.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38123993

RESUMO

Layer 5 pyramidal neurons of sensory cortices project "corticofugal" axons to myriad sub-cortical targets, thereby broadcasting high-level signals important for perception and learning. Recent studies suggest dendritic Ca2+ spikes as key biophysical mechanisms supporting corticofugal neuron function: these long-lasting events drive burst firing, thereby initiating uniquely powerful signals to modulate sub-cortical representations and trigger learning-related plasticity. However, the behavioral relevance of corticofugal dendritic spikes is poorly understood. We shed light on this issue using 2-photon Ca2+ imaging of auditory corticofugal dendrites as mice of either sex engage in a GO/NO-GO sound-discrimination task. Unexpectedly, only a minority of dendritic spikes were triggered by behaviorally relevant sounds under our conditions. Task related dendritic activity instead mostly followed sound cue termination and co-occurred with mice's instrumental licking during the answer period of behavioral trials, irrespective of reward consumption. Temporally selective, optogenetic silencing of corticofugal neurons during the trial answer period impaired auditory discrimination learning. Thus, auditory corticofugal systems' contribution to learning and plasticity may be partially nonsensory in nature.


Assuntos
Córtex Auditivo , Colículos Inferiores , Camundongos , Animais , Colículos Inferiores/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Percepção Auditiva/fisiologia , Células Piramidais , Vias Auditivas/fisiologia , Estimulação Acústica
5.
Front Syst Neurosci ; 17: 1222176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719023

RESUMO

Introduction: In patients with severe auditory impairment, partial hearing restoration can be achieved by sensory prostheses for the electrical stimulation of the central nervous system. However, these state-of-the-art approaches suffer from limited spectral resolution: electrical field spread depends on the impedance of the surrounding medium, impeding spatially focused electrical stimulation in neural tissue. To overcome these limitations, optogenetic activation could be applied in such prostheses to achieve enhanced resolution through precise and differential stimulation of nearby neuronal ensembles. Previous experiments have provided a first proof for behavioral detectability of optogenetic activation in the rodent auditory system, but little is known about the generation of complex and behaviorally relevant sensory patterns involving differential activation. Methods: In this study, we developed and behaviorally tested an optogenetic implant to excite two spatially separated points along the tonotopy of the murine inferior colliculus (ICc). Results: Using a reward based operant Go/No-Go paradigm, we show that differential optogenetic activation of a sub-cortical sensory pathway is possible and efficient. We demonstrate how animals which were previously trained in a frequency discrimination paradigm (a) rapidly respond to either sound or optogenetic stimulation, (b) generally detect optogenetic stimulation of two different neuronal ensembles, and (c) discriminate between them. Discussion: Our results demonstrate that optogenetic excitatory stimulation at different points of the ICc tonotopy elicits a stable response behavior over time periods of several months. With this study, we provide the first proof of principle for sub-cortical differential stimulation of sensory systems using complex artificial cues in freely moving animals.

6.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645904

RESUMO

The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here we use 2-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset were highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ~0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.

7.
J Neurosci ; 43(31): 5642-5655, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37308295

RESUMO

The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.


Assuntos
Córtex Auditivo , Colículos Inferiores , Camundongos , Animais , Colículos Inferiores/fisiologia , Córtex Auditivo/fisiologia , Axônios , Neurônios GABAérgicos/metabolismo , Glutamatos , Vias Auditivas/fisiologia , Estimulação Acústica , Mamíferos
8.
eNeuro ; 7(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327469

RESUMO

Alterations in inhibitory circuits of the primary auditory cortex (pAC) have been shown to be an aspect of aging and age-related hearing loss (AHL). Several studies reported a decline in parvalbumin (PV) immunoreactivity in aged rodent pAC of animals displaying AHL and conclude a relationship between reduced sensitivity and declined PV immunoreactivity. However, it remains elusive whether AHL or a general molecular aging is causative for decreased PV immunoreactivity. In this study, we aimed to disentangle the effects of AHL and general aging on PV immunoreactivity patterns in inhibitory interneurons of mouse pAC. We compared young and old animals of a mouse line with AHL (C57BL/6) and a mutant (C57B6.CAST-Cdh23Ahl+ ) that is not vulnerable to AHL according to their hearing status by measuring auditory brainstem responses (ABRs) and by an immunohistochemical evaluation of the PV immunoreactivity patterns in two dimensions (rostro-caudal and layer) in the pAC. Although AHL could be confirmed by ABR measurements for the C57BL/6 mice, both aged strains showed a similar reduction of PV+ positive interneurons in both, number and density. The pattern of reduction across the rostro-caudal axis and across cortical layers was similar for both aged lines. Our results demonstrate that a reduced PV immunoreactivity is a sign of general, molecular aging and not related to AHL.


Assuntos
Córtex Auditivo , Presbiacusia , Envelhecimento , Animais , Córtex Auditivo/metabolismo , Caderinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo
9.
Proc Biol Sci ; 287(1919): 20192001, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31992168

RESUMO

Successful navigation in complex acoustic scenes requires focusing on relevant sounds while ignoring irrelevant distractors. It has been argued that the ability to track stimulus statistics and generate predictions supports the choice of what to attend and what to ignore. However, the role of these predictions about future auditory events in drafting decisions remains elusive. While most psychophysical studies in humans indicate that expected stimuli are more easily detected, most work studying physiological auditory processing in animals highlights the detection of unexpected, surprising stimuli. Here, we tested whether in the mouse, high target probability results in enhanced detectability or whether detection is biased towards low-probability deviants using an auditory detection task. We implemented a probabilistic choice model to investigate whether a possible dependence on stimulus statistics arises from short-term serial correlations or from integration over longer periods. Our results demonstrate that target detectability in mice decreases with increasing probability, contrary to humans. We suggest that mice indeed track probability over a timescale of at least several minutes but do not use this information in the same way as humans do: instead of maximizing reward by focusing on high-probability targets, the saliency of a target is determined by surprise.


Assuntos
Estimulação Acústica , Percepção Auditiva , Camundongos/fisiologia , Animais
10.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30406178

RESUMO

HCN1 compartmentalization in CA1 pyramidal cells, essential for hippocampal information processing, is believed to be controlled by the extracellular matrix protein Reelin. Expression of Reelin, in turn, is stimulated by 17ß-estradiol (E2). In this study, we therefore tested whether E2 regulates the compartmentalization of HCN1 in CA1 via Reelin. In organotypic entorhino-hippocampal cultures, we found that E2 promotes HCN1 distal dendritic enrichment via the G protein-coupled estrogen receptor GPER1, but apparently independent of Reelin, because GST-RAP, known to reduce Reelin signaling, did not prevent E2-induced HCN1 enrichment in distal CA1. We therefore re-examined the role of Reelin for the regulation of HCN1 compartmentalization and could not detect effects of reduced Reelin signaling on HCN1 distribution in CA1, either in the (developmental) slice culture model or in tamoxifen-inducible conditional reelin knockout mice during adulthood. We conclude that for HCN1 channel compartmentalization in CA1 pyramidal cells, Reelin is not as essential as previously proposed, and E2 effects on HCN1 distribution in CA1 are mediated by mechanisms that do not involve Reelin. Because HCN1 localization was not altered at different phases of the estrous cycle, gonadally derived estradiol is unlikely to regulate HCN1 channel compartmentalization, while the pattern of immunoreactivity of aromatase, the final enzyme of estradiol synthesis, argues for a role of local hippocampal E2 synthesis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Dendritos/efeitos dos fármacos , Estrogênios/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Animais , Dendritos/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Estrogênios/metabolismo , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Células Piramidais/metabolismo , Ratos Wistar , Proteína Reelina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA