Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Toxicol Pathol ; 51(7-8): 414-431, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38380881

RESUMO

Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.


Assuntos
Neuropatologia , Ácidos Nucleicos , Encéfalo , Medula Espinal , Nervo Isquiático
2.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654979

RESUMO

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Assuntos
Precursor de Proteína beta-Amiloide , Terapêutica com RNAi , Animais , Camundongos , Primatas/genética , Primatas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
3.
Gene Expr ; 19(1): 61-67, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30092856

RESUMO

Inbred mice are the most popular animals used for in vivo liver research. These mice are genetically defined, readily available, less expensive to maintain than larger animals, and enjoy a broad array of commercial reagents for scientific characterization. C57BL/6 mice are the most commonly used strain. However, other strains discussed, including BALB/c, C3H, A/J, and FVB/N, may be better suited to a particular disease model or line of investigation. Understanding the phenotypes of different inbred mouse strains facilitates informed decision making during experimental design. Model systems influenced by strain-dependent phenotype include tissue regeneration, drug-induced liver injury (DILI; e.g., acetaminophen), fibrosis (e.g., carbon tetrachloride, CCl4), Fas-induced apoptosis, cholestasis, alcohol-induced liver disease and cirrhosis, nonalcoholic fatty liver disease and steatohepatitis (NAFLD/NASH), and hepatocellular carcinoma (HCC). Thoughtful consideration of the strengths and weaknesses of each inbred strain in a given model system will lead to more robust data and a clearer understanding of translational relevance to human liver disease.


Assuntos
Modelos Animais de Doenças , Hepatopatias/metabolismo , Camundongos Endogâmicos/fisiologia , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Fibrose/patologia , Genótipo , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Hepatopatias/fisiopatologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos/genética , Camundongos Endogâmicos/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fenótipo
4.
Elife ; 72018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30039798

RESUMO

The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.


Assuntos
Antibacterianos/efeitos adversos , Diabetes Mellitus Tipo 1/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Animais , Antibacterianos/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Diabetes Mellitus Tipo 1/patologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Íleo/imunologia , Íleo/microbiologia , Imunidade Inata/imunologia , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos NOD , Microbiota/efeitos dos fármacos , Microbiota/imunologia
5.
Am J Pathol ; 188(7): 1510-1516, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29684361

RESUMO

The new paradigm of mutations in chromatin-modifying genes as driver events in the development of cancers has proved challenging to resolve the complex influences over disease phenotypes. In particular, impaired activities of members of the SWI/SNF chromatin remodeling complex have appeared in an increasing variety of tumors. Mutations in SNF5, a member of this ubiquitously expressed complex, arise in almost all cases of malignant rhabdoid tumor in the absence of additional genetic alterations. Therefore, we studied how activation of additional oncogenic pathways might shift the phenotype of disease driven by SNF5 loss. With the use of a genetically engineered mouse model, we examined the effects of a hypomorphic Vhl2B allele on disease phenotype, with a modest up-regulation of the hypoxia response pathway. Snf5+/-;Vhl2B/+ mice did not demonstrate a substantial difference in overall survival or a change in malignant rhabdoid tumor development. However, a high percentage of female mice showed complex hemorrhagic ovarian cysts, a phenotype rarely found in either parental mouse strain. These lesions also showed mosaic expression of SNF5 by immunohistochemistry. Therefore, our studies implicate that modest changes in angiogenic regulation interact with perturbations of SWI/SNF complex activity to modulate disease phenotypes.


Assuntos
Hemorragia/patologia , Mutação , Cistos Ovarianos/patologia , Proteína SMARCB1/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Feminino , Hemorragia/etiologia , Hemorragia/metabolismo , Camundongos , Camundongos Knockout , Cistos Ovarianos/etiologia , Cistos Ovarianos/metabolismo , Fenótipo
7.
Nat Microbiol ; 3(2): 234-242, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29180726

RESUMO

Antibiotic exposure in children has been associated with the risk of inflammatory bowel disease (IBD). Antibiotic use in children or in their pregnant mother can affect how the intestinal microbiome develops, so we asked whether the transfer of an antibiotic-perturbed microbiota from mothers to their children could affect their risk of developing IBD. Here we demonstrate that germ-free adult pregnant mice inoculated with a gut microbial community shaped by antibiotic exposure transmitted their perturbed microbiota to their offspring with high fidelity. Without any direct or continued exposure to antibiotics, this dysbiotic microbiota in the offspring remained distinct from controls for at least 21 weeks. By using both IL-10-deficient and wild-type mothers, we showed that both inoculum and genotype shape microbiota populations in the offspring. Because IL10-/- mice are genetically susceptible to colitis, we could assess the risk due to maternal transmission of an antibiotic-perturbed microbiota. We found that the IL10-/- offspring that had received the perturbed gut microbiota developed markedly increased colitis. Taken together, our findings indicate that antibiotic exposure shaping the maternal gut microbiota has effects that extend to the offspring, with both ecological and long-term disease consequences.


Assuntos
Antibacterianos/administração & dosagem , Colite/microbiologia , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/microbiologia , Animais , Colite/induzido quimicamente , Colo/imunologia , Colo/microbiologia , Colo/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Doenças Inflamatórias Intestinais/induzido quimicamente , Interleucina-10 , Metagenoma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez
8.
J Exp Med ; 214(12): 3519-3530, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29066577

RESUMO

Regulatory T (T reg) cells are a specialized sublineage of T lymphocytes that suppress autoreactive T cells. Functional studies of T reg cells in vitro have defined multiple suppression mechanisms, and studies of T reg-deficient humans and mice have made clear the important role that these cells play in preventing autoimmunity. However, many questions remain about how T reg cells act in vivo. Specifically, it is not clear which suppression mechanisms are most important, where T reg cells act, and how they get there. To begin to address these issues, we sought to identify T reg cells in zebrafish, a model system that provides unparalleled advantages in live-cell imaging and high-throughput genetic analyses. Using a FOXP3 orthologue as a marker, we identified CD4-enriched, mature T lymphocytes with properties of T reg cells. Zebrafish mutant for foxp3a displayed excess T lymphocytes, splenomegaly, and a profound inflammatory phenotype that was suppressed by genetic ablation of lymphocytes. This study identifies T reg-like cells in zebrafish, providing both a model to study the normal functions of these cells in vivo and mutants to explore the consequences of their loss.


Assuntos
Linfócitos T Reguladores/imunologia , Peixe-Zebra/imunologia , Animais , Sequência de Bases , Doença Crônica , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Hematopoese , Inflamação/patologia , Linfócitos/metabolismo , Mutação/genética , Filogenia , Esplenomegalia/patologia , Análise de Sobrevida , Timócitos/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
9.
Nat Microbiol ; 1(11): 16140, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27782139

RESUMO

The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.


Assuntos
Antibacterianos/efeitos adversos , Diabetes Mellitus Tipo 1/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Penicilina V/efeitos adversos , Animais , Antibacterianos/administração & dosagem , Colesterol/biossíntese , Esquema de Medicação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Metabolismo dos Lipídeos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Mucosa/efeitos dos fármacos , Mucosa/imunologia , Obesidade , Penicilina V/administração & dosagem , RNA Ribossômico 16S , Linfócitos T Reguladores , Células Th17
10.
Oncotarget ; 7(43): 69136-69148, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27655701

RESUMO

OBJECTIVE: Chronic Helicobacter pylori (H. pylori) infection promotes non-cardia gastric cancer. Some mouse models suggest that bone marrow derived cells (BMDC) contribute to Helicobacter-associated gastric carcinogenesis. We determined whether this increased susceptibility to Helicobacter-induced gastric carcinogenesis of p27-deficient mice is dependent upon their p27-null BMDC or their p27-null gastric epithelial cells. DESIGN: Female mice (recipients) were irradiated and transplanted with BMDC from male donors. Wild type (WT) mice in group 1 (control) received BMDC from male GFP-transgenic mice. Female WT and p27 KO mice were engrafted with male p27KO mice BMDC (Group 2) or GFP-transgenic WT BMDC (Group 3). Recipients were infected with H. pylori SS1 for one year. RESULTS: Mice lacking p27 in either the BM pool or gastric epithelium developed significantly more advanced gastric pathology, including high-grade dysplasia. Co-staining of donor BMDC in dysplastic gastric glands was confirmed by immunofluorescence. Gastric expression of IL-1 beta protein was reduced in groups 2 and 3 (p < 0.05 vs control) whereas expression of IFN-γ and chemokines MIP-1 beta, MIG, IP-10 and RANTES in group 2 were significantly higher than group 3. CONCLUSIONS: Both bone marrow-derived and gastric epithelial cells contribute to the increased gastric cancer susceptibility of p27-deficient H. pylori-infected mice.


Assuntos
Células da Medula Óssea/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Infecções por Helicobacter/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Células da Medula Óssea/microbiologia , Transplante de Medula Óssea/métodos , Inibidor de Quinase Dependente de Ciclina p27/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mosaicismo , Neoplasias Gástricas/microbiologia
11.
Infect Immun ; 84(1): 138-48, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483408

RESUMO

Infection with enterohemorrhagic Escherichia coli (EHEC) can result in severe disease, including hemorrhagic colitis and the hemolytic uremic syndrome. Shiga toxins (Stx) are the key EHEC virulence determinant contributing to severe disease. Despite inhibiting protein synthesis, Shiga toxins paradoxically induce the expression of proinflammatory cytokines from various cell types in vitro, including intestinal epithelial cells (IECs). This effect is mediated in large part by the ribotoxic stress response (RSR). The Shiga toxin-induced RSR is known to involve the activation of the stress-activated protein kinases (SAPKs) p38 and JNK. In some cell types, Stx also can induce the classical mitogen-activated protein kinases (MAPKs) or ERK1/2, but the mechanism(s) by which this activation occurs is unknown. In this study, we investigated the mechanism by which Stx activates ERK1/2s in IECs and the contribution of ERK1/2 activation to interleukin-8 (IL-8) expression. We demonstrate that Stx1 activates ERK1/2 in a biphasic manner: the first phase occurs in response to StxB1 subunit, while the second phase requires StxA1 subunit activity. We show that the A subunit-dependent ERK1/2 activation is mediated through ZAK-dependent signaling, and inhibition of ERK1/2 activation via the MEK1/2 inhibitors U0126 and PD98059 results in decreased Stx1-mediated IL-8 mRNA. Finally, we demonstrate that ERK1/2 are activated in vivo in the colon of Stx2-intoxicated infant rabbits, a model in which Stx2 induces a primarily neutrophilic inflammatory response. Together, our data support a role for ERK1/2 activation in the development of Stx-mediated intestinal inflammation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Butadienos/farmacologia , Linhagem Celular , Escherichia coli Êntero-Hemorrágica/patogenicidade , Ativação Enzimática , Células Epiteliais/imunologia , Infecções por Escherichia coli/microbiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Flavonoides/farmacologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Células HEK293 , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Inflamação/imunologia , Interleucina-8/biossíntese , Interleucina-8/genética , Mucosa Intestinal/imunologia , MAP Quinase Quinase Quinases , Nitrilas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Coelhos
12.
Nat Med ; 21(8): 906-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107252

RESUMO

The inflammasome activates caspase-1 and the release of interleukin-1ß (IL-1ß) and IL-18, and several inflammasomes protect against intestinal inflammation and colitis-associated colon cancer (CAC) in animal models. The absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA, and AIM2 expression is reduced in several types of cancer, but the mechanism by which AIM2 restricts tumor growth remains unclear. We found that Aim2-deficient mice had greater tumor load than Asc-deficient mice in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal cancer. Tumor burden was also higher in Aim2(-/-)/Apc(Min/+) than in APC(Min/+) mice. The effects of AIM2 on CAC were independent of inflammasome activation and IL-1ß and were primarily mediated by a non-bone marrow source of AIM2. In resting cells, AIM2 physically interacted with and limited activation of DNA-dependent protein kinase (DNA-PK), a PI3K-related family member that promotes Akt phosphorylation, whereas loss of AIM2 promoted DNA-PK-mediated Akt activation. AIM2 reduced Akt activation and tumor burden in colorectal cancer models, while an Akt inhibitor reduced tumor load in Aim2(-/-) mice. These findings suggest that Akt inhibitors could be used to treat AIM2-deficient human cancers.


Assuntos
Neoplasias do Colo/prevenção & controle , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Inflamassomos/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Colite/complicações , Feminino , Células HCT116 , Humanos , Pólipos Intestinais/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
13.
Cancer Lett ; 359(2): 345-51, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25853150

RESUMO

H. pylori infection causes gastritis, peptic ulcers and gastric cancer. Eradicating H. pylori prevents ulcers, but to what extent this prevents cancer remains unknown, especially if given after intestinal metaplasia has developed. H. pylori infected wild-type (WT) mice do not develop cancer, but mice lacking the tumor suppressor p27 do so, thus providing an experimental model of H. pylori-induced cancer. We infected p27-deficient mice with H. pylori strain SS1 at 6-8 weeks of age. Persistently H. pylori-infected WT C57BL/6 mice served as controls. Mice in the eradication arms received antimicrobial therapy (omeprazole, metronidazole and clarithromycin) either "early" (at 15 weeks post infection, WPI) or "late" at 45 WPI. At 70 WPI, mice were euthanized for H. pylori determination, histopathology and cytokine/chemokine expression. Persistently infected mice developed premalignant lesions including high-grade dysplasia, whereas those given antibiotics did not. Histologic activity scores in the eradication groups were similar to each other, and were significantly decreased compared with controls for inflammation, epithelial defects, hyperplasia, metaplasia, atrophy and dysplasia. IP-10 and MIG levels in groups that received antibiotics were significantly lower than controls. There were no significant differences in expression of IFN-γ, TNF-α, IL-1ß, RANTES, MCP-1, MIP-1α or MIP-1ß among the three groups. Thus, H. pylori eradication given either early or late after infection significantly attenuated gastric inflammation, gastric atrophy, hyperplasia, and dysplasia in the p27-deficient mice model of H. pylori-induced gastric cancer, irrespective of the timing of antibiotic administration. This was associated with reduced expression of IP-10 and MIG.


Assuntos
Antibacterianos/uso terapêutico , Infecções por Helicobacter/complicações , Neoplasias Gástricas/microbiologia , Animais , Antibacterianos/farmacologia , Quimiocina CXCL10/sangue , Quimiocina CXCL10/genética , Quimiocina CXCL9/sangue , Quimiocina CXCL9/genética , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Expressão Gênica , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/imunologia , Humanos , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Camundongos Endogâmicos C57BL , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia
14.
Gastrointest Cancer ; 5: 61-71, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844041

RESUMO

BACKGROUND: PTEN loss contributes to the development of liver diseases including hepatic steatosis and both hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). The factors that influence the penetrance of these conditions are unclear. We explored the influence of sustained hypoxia signaling through co-deletion of Pten and Vhl in a murine model. METHODS: We used a CreER-linked Keratin 18 mouse model to conditionally delete Pten, Vhl or both in somatic cells of adult mice, evaluating the resultant tumors by histology and gene expression microarray. Existing sets of gene expression data for human HCC and CC were examined for pathways related to those observed in the murine tumors, and a cohort of human CC samples was evaluated for relationships between HIF-1α expression and clinical outcomes. RESULTS: Both Pten deletion genotypes developed liver tumors, but with differing phenotypes. Pten deletion alone led to large hepatic tumors with widespread hepatosteatosis. Co-deletion of Pten and Vhl with the Keratin 18 promoter resulted in reduced steatosis and a reduced tumor burden that was characterized by a trabecular architecture similar to CC. Genes associated with hepatic steatosis were coordinately expressed in the human HCC dataset, while genes involved in hypoxia response were upregulated in tumors from the human CC dataset. HIF-1α expression and overall survival were examined in an independent cohort of human CC tumors with no statistical differences uncovered. CONCLUSION: Pten deletion in Keratin 18 expressing cells leads to aggressive tumor formation and widespread steatosis in mouse livers. Co-deletion of Vhl and Pten results in lower tumor burden with gene expression profiling suggesting a switch from a profile of lipid deposition to an expression profile more consistent with upregulation of the hypoxia response pathway. A relationship between tumor hypoxia signaling and altered hepatic steatotic response suggests that competing influences may alter tumor phenotypes.

15.
Clin Cancer Res ; 20(23): 6083-95, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25231403

RESUMO

PURPOSE: Tumor cells are surrounded by a complex microenvironment. The purpose of our study was to evaluate the role of heterogeneity of the tumor microenvironment in the variability of nanoparticle (NP) delivery and efficacy. EXPERIMENTAL DESIGNS: C3(1)-T-Antigen genetically engineered mouse model (C3-TAg) and T11/TP53(Null) orthotopic syngeneic murine transplant model (T11) representing human breast tumor subtypes basal-like and claudin-low, respectively, were evaluated. For the pharmacokinetic studies, non-liposomal doxorubicin (NL-doxo) or polyethylene glycol tagged (PEGylated) liposomal doxorubicin (PLD) was administered at 6 mg/kg i.v. x1. Area under the concentration versus time curve (AUC) of doxorubicin was calculated. Macrophages, collagen, and the amount of vasculature were assessed by IHC. Chemokines and cytokines were measured by multiplex immunochemistry. NL-doxo or PLD was administered at 6 mg/kg i.v. weekly x6 in efficacy studies. Analyses of intermediary tumor response and overall survival were performed. RESULTS: Plasma AUC of NL-doxo and PLD encapsulated and released doxorubicin was similar between two models. However, tumor sum total AUC of PLD was 2-fold greater in C3-TAg compared with T11 (P < 0.05). T11 tumors showed significantly higher expression of CC chemokine ligand (CCL) 2 and VEGF-a, greater vascular quantity, and decreased expression of VEGF-c compared with C3-TAg (P < 0.05). PLD was more efficacious compared with NL-doxo in both models. CONCLUSION: The tumor microenvironment and/or tumor cell features of breast cancer affected NP tumor delivery and efficacy, but not the small-molecule drug. Our findings reveal the role of the tumor microenvironment in variability of NP delivery and therapeutic outcomes.


Assuntos
Neoplasias da Mama/patologia , Nanopartículas/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Quimiocina CCL2/sangue , Quimiocina CCL2/metabolismo , Quimiocina CCL5/sangue , Quimiocina CCL5/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Feminino , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Nanopartículas/administração & dosagem , Neovascularização Patológica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Carga Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Lett ; 355(1): 106-12, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25218349

RESUMO

H. pylori infection causes gastritis, peptic ulcers and gastric cancer. Eradicating H. pylori prevents ulcers, but to what extent this prevents cancer remains unknown, especially if given after intestinal metaplasia has developed. H. pylori infected wild-type (WT) mice do not develop cancer, but mice lacking the tumor suppressor p27 do so, thus providing an experimental model of H. pylori-induced cancer. We infected p27-deficient mice with H. pylori strain SS1 at 6-8 weeks of age. Persistently H. pylori-infected WT C57BL/6 mice served as controls. Mice in the eradication arms received antimicrobial therapy (omeprazole, metronidazole and clarithromycin) either "early" (at 15 weeks post infection, WPI) or "late" at 45 WPI. At 70 WPI, mice were euthanized for H. pylori determination, histopathology and cytokine/chemokine expression. Persistently infected mice developed premalignant lesions including high-grade dysplasia, whereas those given antibiotics did not. Histologic activity scores in the eradication groups were similar to each other, and were significantly decreased compared with controls for inflammation, epithelial defects, hyperplasia, metaplasia, atrophy and dysplasia. IP-10 and MIG levels in groups that received antibiotics were significantly lower than controls. There were no significant differences in expression of IFN-γ, TNF-α, IL-1ß, RANTES, MCP-1, MIP-1α or MIP-1ß among the three groups. Thus, H. pylori eradication given either early or late after infection significantly attenuated gastric inflammation, gastric atrophy, hyperplasia, and dysplasia in the p27-deficient mice model of H. pylori-induced gastric cancer, irrespective of the timing of antibiotic administration. This was associated with reduced expression of IP-10 and MIG.


Assuntos
Antibacterianos/administração & dosagem , Gastrite/prevenção & controle , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Neoplasias Gástricas/prevenção & controle , Estômago/efeitos dos fármacos , Animais , Atrofia , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada , Mucosa Gástrica/metabolismo , Gastrite/genética , Gastrite/metabolismo , Gastrite/microbiologia , Gastrite/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/patogenicidade , Hiperplasia , Mediadores da Inflamação/metabolismo , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Bomba de Prótons/administração & dosagem , Estômago/microbiologia , Estômago/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Fatores de Tempo
17.
Cell ; 158(4): 705-721, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126780

RESUMO

Acquisition of the intestinal microbiota begins at birth, and a stable microbial community develops from a succession of key organisms. Disruption of the microbiota during maturation by low-dose antibiotic exposure can alter host metabolism and adiposity. We now show that low-dose penicillin (LDP), delivered from birth, induces metabolic alterations and affects ileal expression of genes involved in immunity. LDP that is limited to early life transiently perturbs the microbiota, which is sufficient to induce sustained effects on body composition, indicating that microbiota interactions in infancy may be critical determinants of long-term host metabolic effects. In addition, LDP enhances the effect of high-fat diet induced obesity. The growth promotion phenotype is transferrable to germ-free hosts by LDP-selected microbiota, showing that the altered microbiota, not antibiotics per se, play a causal role. These studies characterize important variables in early-life microbe-host metabolic interaction and identify several taxa consistently linked with metabolic alterations. PAPERCLIP:


Assuntos
Antibacterianos/administração & dosagem , Modelos Animais de Doenças , Intestinos/microbiologia , Microbiota , Obesidade/microbiologia , Penicilinas/administração & dosagem , Animais , Bactérias/classificação , Bactérias/metabolismo , Feminino , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Obesidade/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(31): 11455-60, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049387

RESUMO

Women are more resistant to hepatocellular carcinoma (HCC) than men despite equal exposure to major risk factors, such as hepatitis B or C virus infection. Female resistance is hormone-dependent, as evidenced by the sharp increase in HCC incidence in postmenopausal women who do not take hormone replacement therapy. In rodent models sex-dimorphic HCC phenotypes are pituitary-dependent, suggesting that sex hormones act via the gonadal-hypophyseal axis. We found that the estrogen-responsive pituitary hormone prolactin (PRL), signaling through hepatocyte-predominant short-form prolactin receptors (PRLR-S), constrained TNF receptor-associated factor (TRAF)-dependent innate immune responses invoked by IL-1ß, TNF-α, and LPS/Toll-like receptor 4 (TLR4), but not TRIF-dependent poly(I:C)/TLR3. PRL ubiquitinated and accelerated poststimulatory decay of a "trafasome" comprised of IRAK1, TRAF6, and MAP3K proteins, abrogating downstream activation of c-Myc-interacting pathways, including PI3K/AKT, mTORC1, p38 MAPK, and NF-κB. Consistent with this finding, we documented exaggerated male liver responses to immune stimuli in mice and humans. Tumor promotion through, but regulation above, the level of c-Myc was demonstrated by sex-independent HCC eruption in Alb-Myc transgenic mice. PRL deficiency accelerated liver carcinogenesis in Prl(-/-) mice of both sexes. Conversely, pharmacologic PRL mobilization using the dopamine D2 receptor antagonist domperidone prevented HCC in tumor-prone C3H/HeN males. Viewed together, our results demonstrate that PRL constrains tumor-promoting liver inflammation by inhibiting MAP3K-dependent activation of c-Myc at the level of the trafasome. PRL-targeted therapy may hold promise for reducing the burden of liver cancer in high-risk men and women.


Assuntos
Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/prevenção & controle , Imunidade Inata , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/prevenção & controle , Prolactina/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Adulto , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Domperidona/farmacologia , Domperidona/uso terapêutico , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/patologia , Interleucina-1beta/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Prolactina/deficiência , Prolactina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Prolactina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismo
19.
Crit Rev Oncog ; 19(6): 469-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25597356

RESUMO

Helicobacter pylori is a helical bacterium that colonizes the stomach in over half of the world's population. Infection with this bacterium has been linked to peptic ulcer disease and gastric cancer. The bacterium has been shown to affect regulatory pathways in its host cells through specific virulence factors that control gene expression. Infection with H. pylori increases levels of phosphorylation of Raf kinase inhibitor protein (pRKIP) in gastric adenocarcinoma (AGS) cells in vitro and in vivo. We investigated the role of H. pylori in the phosphorylation of RKIP as a possible mechanism to downregulate pro-survival signals in gastric adenocarcinoma. pRKIP induces RKIP transcriptional activity, which serves to induce apoptosis of damaged cells to prevent further tumorigenesis. Infection of wild type and RKIP knockout mice with H. pylori for 2 months further confirmed roles of RKIP and pRKIP in the prevention of gastric cancer progression. Loss of RKIP in AGS cells results in increased expression of the Cag A virulence factor after H. pylori infection and RKIP overexpression inhibits H. pylori-mediated STAT3 phosphorylation and STAT3 and NF-κB transcriptional activity. We examined the role of mTOR (mammalian target of rapamycin) after H. pylori infection on the phosphorylation of RKIP. Cells treated with rapamycin, an inhibitor of mTOR, displayed less expression of pRKIP after H. pylori infection. Microarray antibody analysis was conducted on wild-type and RKIP-knockdown AGS cells and showed that in the absence of RKIP, there was increased expression of pro-tumorigenic proteins such as EGFR, Raf-1, and MAPKs. Although further work is needed to confirm the interaction of RKIP and mTOR in AGS cells as a result of H. pylori infection, we hypothesize that H. pylori-mediated induction of pro-survival signaling in gastric epithelial cells induces a feedback response through the activation of RKIP. The phosphorylated, or active, form of RKIP is important in protecting gastric epithelial cells from tumorigenesis after H. pylori infection.


Assuntos
Infecções por Helicobacter/complicações , Helicobacter pylori/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Animais , Carcinogênese/genética , Infecções por Helicobacter/genética , Humanos , Camundongos , Camundongos Knockout , Proteína de Ligação a Fosfatidiletanolamina/genética , Transdução de Sinais/genética
20.
PLoS One ; 8(9): e73347, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098634

RESUMO

Although antiretroviral treatment decreases HIV-AIDS morbidity/mortality, long-term side effects may include the onset of insulin resistance and cardiovascular diseases. However, the underlying molecular mechanisms responsible for highly active antiretroviral therapy (HAART)-induced cardio-metabolic effects are poorly understood. In light of this, we hypothesized that HIV protease inhibitor (PI) treatment (Lopinavir/Ritonavir) elevates myocardial oxidative stress and concomitantly inhibits the ubiquitin proteasome system (UPS), thereby attenuating cardiac function. Lopinavir/Ritonavir was dissolved in 1% ethanol (vehicle) and injected into mini-osmotic pumps that were surgically implanted into Wistar rats for 8 weeks vs. vehicle and sham controls. We subsequently evaluated metabolic parameters, gene/protein markers and heart function (ex vivo Langendorff perfusions). PI-treated rats exhibited increased serum LDL-cholesterol, higher tissue triglycerides (heart, liver), but no evidence of insulin resistance. In parallel, there was upregulation of hepatic gene expression, i.e. acetyl-CoA carboxylase b and 3-hydroxy-3-methylglutaryl-CoA-reductase, key regulators of fatty acid oxidation and cholesterol synthesis, respectively. PI-treated hearts displayed impaired cardiac contractile function together with attenuated UPS activity. However, there was no significant remodeling of hearts exposed to PIs, i.e. lack of ultrastructural changes, fibrosis, cardiac hypertrophic response, and oxidative stress. Western blot analysis of PI-treated hearts revealed that perturbed calcium handling may contribute to the PI-mediated contractile dysfunction. Here chronic PI administration led to elevated myocardial calcineurin, nuclear factor of activated T-cells 3 (NFAT3), connexin 43, and phosphorylated phospholamban, together with decreased calmodulin expression levels. This study demonstrates that early changes triggered by PI treatment include increased serum LDL-cholesterol levels together with attenuated cardiac function. Furthermore, PI exposure inhibits the myocardial UPS and leads to elevated calcineurin and connexin 43 expression that may be associated with the future onset of cardiac contractile dysfunction.


Assuntos
Terapia Antirretroviral de Alta Atividade/métodos , Infecções por HIV/tratamento farmacológico , Inibidores da Protease de HIV/farmacologia , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Análise de Variância , Animais , Western Blotting , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , LDL-Colesterol/sangue , Conexina 43/metabolismo , Primers do DNA/genética , Combinação de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Lopinavir/farmacologia , Masculino , Fatores de Transcrição NFATC/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Ritonavir/farmacologia , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA