Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39219981

RESUMO

Gradient nonlinearities not only induce spatial distortion in magnetic resonance imaging (MRI), but also introduce discrepancies between intended and acquired diffusion sensitization in diffusion weighted (DW) MRI. Advances in scanner performance have increased the importance of correcting gradient nonlinearities. The most common approaches for gradient nonlinear field estimations rely on phantom calibration field maps which are not always feasible, especially on retrospective data. Here, we derive a quadratic minimization problem for the complete gradient nonlinear field (L(r)). This approach starts with corrupt diffusion signal and estimates the L(r) in two scenarios: (1) the true diffusion tensor known and (2) the true diffusion tensor unknown (i.e., diffusion tensor is estimated). We show the validity of this mathematical approach, both theoretically and through tensor simulation. The estimated field is assessed through diffusion tensor metrics: mean diffusivity (MD), fractional anisotropy (FA), and principal eigenvector (V1). In simulation with 300 diffusion tensors, the study shows the mathematical model is not ill-posed and remains stable. We find when the true diffusion tensor is known (1) the change in determinant of the estimated L(r) field and the true field is near zero and (2) the median difference in estimated L(r) corrected diffusion metrics to true values is near zero. We find the results of L(r) estimation are dependent on the level of L(r) corruption. This work provides an approach to estimate gradient field without the need for additional calibration scans. To the best of our knowledge, the mathematical derivation presented here is novel.

2.
Brain Imaging Behav ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235695

RESUMO

Resting state correlations between blood oxygenation level dependent (BOLD) MRI signals from voxels in white matter (WM) are demonstrably anisotropic, so that functional correlation tensors (FCT) may be used to quantify the underlying microstructure of BOLD effects in WM tracts. However, the overall spatial distribution of FCTs and their metrics in specific populations has not yet been established, and the factors that affect their precise arrangements remain unclear. Changes in WM occur with normal aging, and these may be expected to affect FCTs. We hypothesized that FCTs exhibit a characteristic spatial pattern and may show systematic changes with aging or other factors. Here we report our analyses of the FCT characteristics of fMRI images of a large cohort of 461 cognitively normal subjects (190 females, 271 males) sourced from the Open Access Series of Imaging Studies (OASIS), with age distributions of 42 y/o - 95 y/o. Group averages and statistics of FCT indices, including axial functional correlations, radial functional correlations, mean functional correlations and fractional anisotropy, were quantified in WM bundles defined by the JHU ICBM-DTI-81 WM atlas. In addition, their variations with normal aging were examined. The results revealed a dimorphic distribution of changes in FCT metrics with age, with decreases of the functional correlations in some regions and increases in others. Supplementary analysis revealed that females exhibited significant age effects on a greater number of WM areas, but the interaction between age and sex was not significant. The findings demonstrate the reproducibility of the spatial distribution of FCT metrics and reveal subtle regional changes with age.

3.
Neurology ; 103(7): e209816, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39226517

RESUMO

BACKGROUND AND OBJECTIVES: Despite the success of presurgical network connectivity studies in predicting short-term (1-year) seizure outcomes, later seizure recurrence occurs in some patients with temporal lobe epilepsy (TLE). To uncover contributors to this recurrence, we investigated the relationship between functional connectivity and seizure outcomes at different time points after surgery in these patients. METHODS: Patients included were clinically diagnosed with unilateral mesial TLE after a standard clinical evaluation and underwent selective amygdalohippocampectomy. Healthy controls had no history of seizures or head injury. Using resting-state fMRI, we assessed the postsurgical functional connectivity node strength, computed as the node's total strength to all other nodes, between seizure-free (Engel Ia-Ib) and nonseizure-free (Engel Ic-IV) acquisitions. The change over time after surgery in different outcome groups in these nodes was also characterized. RESULTS: Patients with TLE (n = 32, mean age: 43.1 ± 11.9 years; 46.8% female) and 85 healthy controls (mean age: 37.7 ± 13.5 years; 48.2% female) were included. Resting fMRI was acquired before surgery and at least once after surgery in each patient (range 1-4 scans, 5-60 months). Differences between patients with (n = 30) and without (n = 18) seizure freedom were detected in the posterior insula ipsilateral to the resection (I-PIns: 95% CI -154.8 to -50.1, p = 2.8 × 10-4) and the bilateral central operculum (I-CO: 95% CI -163.2 to -65.1, p = 2.6 × 10-5, C-CO: 95% CI -172.7 to -55.8, p = 2.8 × 10-4). In these nodes, only those who were seizure-free had increased node strength after surgery that increased linearly over time (I-CO: 95% CI 1.0-5.2, p = 4.2 × 10-3, C-CO: 95% CI 1.0-5.2, p = 5.5 × 10-3, I-PIns: 95% CI 1.6-5.5, p = 0.9 × 10-3). Different outcome groups were not distinguished by node strength before surgery. DISCUSSION: The findings suggest that network evolution in the first 5 years after selective amygdalohippocampectomy surgery is related to seizure outcomes in TLE. This highlights the need to identify presurgical and surgical conditions that lead to disparate postsurgical trajectories between seizure-free and nonseizure-free patients to identify potential contributors to long-term seizure outcomes. However, the lack of including other surgical approaches may affect the generalizability of the results.


Assuntos
Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Convulsões , Humanos , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Resultado do Tratamento , Convulsões/cirurgia , Convulsões/fisiopatologia , Convulsões/diagnóstico por imagem , Hipocampo/cirurgia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Tonsila do Cerebelo/cirurgia , Tonsila do Cerebelo/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem
4.
Neuropsychopharmacology ; 49(10): 1518-1527, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38480909

RESUMO

Thalamic abnormalities have been repeatedly implicated in the pathophysiology of schizophrenia and other neurodevelopmental disorders. Uncovering the etiology of thalamic abnormalities and how they may contribute to illness phenotypes faces at least two obstacles. First, the typical developmental trajectories of thalamic nuclei and their association with cognition across the lifespan are largely unknown. Second, modest effect sizes indicate marked individual differences and pose a significant challenge to personalized medicine. To address these knowledge gaps, we characterized the development of thalamic nuclei volumes using normative models generated from the Human Connectome Project Lifespan datasets (5-100+ years), then applied them to an independent clinical cohort to determine the frequency of thalamic volume deviations in people with schizophrenia (17-61 years). Normative models revealed diverse non-linear age effects across the lifespan. Association nuclei exhibited negative age effects during youth but stabilized in adulthood until turning negative again with older age. Sensorimotor nuclei volumes remained relatively stable through youth and adulthood until also turning negative with older age. Up to 18% of individuals with schizophrenia exhibited abnormally small (i.e., below the 5th centile) mediodorsal and pulvinar volumes, and the degree of deviation, but not raw volumes, correlated with the severity of cognitive impairment. While case-control differences are robust, only a minority of patients demonstrate unusually small thalamic nuclei volumes. Normative modeling enables the identification of these individuals, which is a necessary step toward precision medicine.


Assuntos
Esquizofrenia , Núcleos Talâmicos , Humanos , Esquizofrenia/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Adulto , Núcleos Talâmicos/patologia , Núcleos Talâmicos/diagnóstico por imagem , Feminino , Adulto Jovem , Adolescente , Masculino , Pessoa de Meia-Idade , Conectoma , Criança , Imageamento por Ressonância Magnética , Pré-Escolar , Idoso de 80 Anos ou mais
5.
Epilepsia ; 65(3): 675-686, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240699

RESUMO

OBJECTIVE: To understand the potential behavioral and cognitive effects of mesial temporal resection for temporal lobe epilepsy (TLE) a method is required to characterize network-wide functional alterations caused by a discrete structural disconnection. The objective of this study was to investigate network-wide alterations in brain dynamics of patients with TLE before and after surgical resection of the seizure focus using average regional controllability (ARC), a measure of the ability of a node to influence network dynamics. METHODS: Diffusion-weighted imaging (DWI) data were acquired in 27 patients with drug-resistant unilateral mesial TLE who underwent selective amygdalohippocampectomy. Imaging data were acquired before and after surgery and a presurgical and postsurgical structural connectome was generated from whole-brain tractography. Edge-wise strength, node strength, and node ARC were compared before and after surgery. Direct and indirect edge-wise strength changes were identified using patient-specific simulated resections. Direct edges were defined as primary edges disconnected by the resection zone itself. Indirect edges were secondary measured edge strength changes. Changes in node strength and ARC were then related to both direct and indirect edge changes. RESULTS: We found nodes with significant postsurgical changes in both node strength and ARC surrounding the resection zone (paired t tests, p < .05, Bonferroni corrected). ARC identified additional postsurgical changes in nodes outside of the resection zone within the ipsilateral occipital lobe, which were associated with indirect edge-wise strength changes of the postsurgical network (Fisher's exact test, p < .001). These indirect edge-wise changes were facilitated through the "hub" nodes including the thalamus, putamen, insula, and precuneus. SIGNIFICANCE: Discrete network disconnection from TLE resection results in widespread structural and functional changes not predicted by disconnection alone. These can be well characterized by dynamic controllability measures such as ARC and may be useful for investigating changes in brain function that may contribute to seizure recurrence and behavioral or cognitive changes after surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética/métodos , Resultado do Tratamento , Encéfalo , Convulsões , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia
6.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231211396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021451

RESUMO

Background: Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective: We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods: MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results: Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion: Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.

7.
Sci Rep ; 13(1): 16898, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803105

RESUMO

Seasonal variations have long been observed in various aspects of human life. While there is an abundance of research that has characterized seasonality effects in, for example, cognition, mood, and behavior, including studies of underlying biophysical mechanisms, direct measurements of seasonal variations of brain functional activities have not gained wide attention. We have quantified seasonal effects on functional connectivity as derived from MRI scans. A cohort of healthy human subjects was divided into four groups based on the seasons of their scanning dates as documented in the image database of the Human Connectome Project. Sinusoidal functions were used as regressors to determine whether there were significant seasonal variations in measures of brain activities. We began with the analysis of seasonal variations of the fractional amplitudes of low frequency fluctuations of regional functional signals, followed by the seasonal variations of functional connectivity in both global- and network-level. Furthermore, relevant environmental factors, including average temperature and daylength, were found to be significantly associated with brain functional activities, which may explain how the observed seasonal fluctuations arise. Finally, topological properties of the brain functional network also showed significant variations across seasons. All the observations accumulated revealed seasonality effects of human brain activities in a resting-state, which may have important practical implications for neuroimaging research.


Assuntos
Encéfalo , Conectoma , Humanos , Estações do Ano , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Cognição
8.
Biol Psychiatry Glob Open Sci ; 3(4): 979-989, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881573

RESUMO

Background: Hippocampal abnormalities are among the most consistent findings in schizophrenia. Numerous studies have reported deficits in hippocampal volume, function, and connectivity in the chronic stage of illness. While hippocampal volume and function deficits are also present in the early stage of illness, there is mixed evidence of both higher and lower functional connectivity. Here, we use graph theory to test the hypothesis that hippocampal network connectivity is broadly lowered in early psychosis and progressively worsens over 2 years. Methods: We examined longitudinal resting-state functional connectivity in 140 participants (68 individuals in the early stage of psychosis, 72 demographically similar healthy control individuals). We used an anatomically driven approach to quantify hippocampal network connectivity at 2 levels: 1) a core hippocampal-medial temporal lobe cortex (MTLC) network; and 2) an extended hippocampal-cortical network. Group and time effects were tested in a linear mixed effects model. Results: Early psychosis patients showed elevated functional connectivity in the core hippocampal-MTLC network, but contrary to our hypothesis, did not show alterations within the broader hippocampal-cortical network. Hippocampal-MTLC network hyperconnectivity normalized longitudinally and predicted improvement in positive symptoms but was not associated with increasing illness duration. Conclusions: These results show abnormally elevated functional connectivity in a core hippocampal-MTLC network in early psychosis, suggesting that selectively increased hippocampal signaling within a localized cortical circuit may be a marker of the early stage of psychosis. Hippocampal-MTLC hyperconnectivity could have prognostic and therapeutic implications.

9.
Sci Rep ; 13(1): 18189, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875563

RESUMO

Functional MRI (fMRI) of the spinal cord is an expanding area of research with potential to investigate neuronal activity in the central nervous system. We aimed to characterize the functional connectivity features of the human lumbar spinal cord using resting-state fMRI (rs-fMRI) at 3T, using region-based and data-driven analysis approaches. A 3D multi-shot gradient echo resting-state blood oxygenation level dependent-sensitive rs-fMRI protocol was implemented in 26 healthy participants. Average temporal signal-to-noise ratio in the gray matter was 16.35 ± 4.79 after denoising. Evidence of synchronous signal fluctuations in the ventral and dorsal horns with their contralateral counterparts was observed in representative participants using interactive, exploratory seed-based correlations. Group-wise average in-slice Pearson's correlations were 0.43 ± 0.17 between ventral horns, and 0.48 ± 0.16 between dorsal horns. Group spatial independent component analysis (ICA) was used to identify areas of coherent activity¸ and revealed components within the gray matter corresponding to anatomical regions. Lower-dimensionality ICA revealed bilateral components corresponding to ventral and dorsal networks. Additional separate ICAs were run on two subsets of the participant group, yielding two sets of components that showed visual consistency and moderate spatial overlap. This work shows feasibility of rs-fMRI to probe the functional features and organization of the lumbar spinal cord.


Assuntos
Substância Cinzenta , Medula Espinal , Animais , Humanos , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiologia , Substância Cinzenta/diagnóstico por imagem , Corno Dorsal da Medula Espinal , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Voluntários Saudáveis , Encéfalo , Mapeamento Encefálico/métodos
10.
Hum Brain Mapp ; 44(17): 6001-6019, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37751068

RESUMO

Prolonged inflammatory expression within the central nervous system (CNS) is recognized by the brain as a molecular signal of "sickness", that has knock-on effects to the blood-brain barrier, brain-spinal barrier, blood-cerebrospinal fluid barrier, neuro-axonal structures, neurotransmitter activity, synaptic plasticity, neuroendocrine function, and resultant systemic symptomatology. It is concurred that the inflammatory process associated with cancer and cancer treatments underline systemic symptoms present in a large portion of survivors, although this concept is largely theoretical from disparate and indirect evidence and/or clinical anecdotal reports. We conducted a proof-of-concept study to link for the first time late non-CNS cancer survivors presenting chronic systemic symptoms and the presence of centralized inflammation, or neuroinflammation, using TSPO-binding PET tracer [11 C]-PBR28 to visualize microglial activation. We compared PBR28 SUVR in 10 non-CNS cancer survivors and 10 matched healthy controls. Our data revealed (1) microglial activation was significantly higher in caudate, temporal, and occipital regions in late non-central nervous system/CNS cancer survivors compared to healthy controls; (2) increased neuroinflammation in cancer survivors was not accompanied by significant differences in plasma cytokine markers of peripheral inflammation; (3) increased neuroinflammation was not accompanied by reduced fractional anisotropy, suggesting intact white matter microstructural integrity, a marker of neurovascular fiber tract organization; and (4) the presentation of chronic systemic symptoms in cancer survivors was significantly connected with microglial activation. We present the first data empirically supporting the concept of a peripheral-to-centralized inflammatory response in non-CNS cancer survivors, specifically those previously afflicted with head and neck cancer. Following resolution of the initial peripheral inflammation from the cancer/its treatments, in some cases damage/toxification to the central nervous system occurs, ensuing chronic systemic symptoms.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Microglia/metabolismo , Tomografia por Emissão de Pósitrons , Doenças Neuroinflamatórias , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Neoplasias/metabolismo , Receptores de GABA/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37600506

RESUMO

Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37621418

RESUMO

Nonlinear gradients impact diffusion weighted MRI by introducing spatial variation in estimated diffusion tensors. Recent studies have shown that increasing signal-to-noise ratios and the use of ultra-strong gradients may lead to clinically significant impacts on analyses due to these nonlinear gradients in microstructural measures. These effects can potentially bias tractography results and cause misinterpretation of data. Herein, we characterize the impact of an "approximate" gradient nonlinearity correction technique in tractography using empirically derived gradient nonlinear fields. This technique scales the diffusion signal by the change in magnitude due to the gradient nonlinearities, without concomitant correction of gradient direction errors. The impact of this correction on tractography is assessed through white matter bundle segmentation and connectomics via bundle-wise volume, fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, primary eigenvector, and length; as well as the modularity, global efficiency, and characteristic path length connectomics graph measures. We investigate the differences between (1) these measures directly and (2) the within session variability of these measures before and after approximate correction in 61 subjects from the MASiVar pediatric reproducibility dataset. We find approximate correction results is little to no differences on the population level, but large differences on the subject-specific level for both the measures directly and their within session variability. Thus, this study suggests though approximate correction of gradient nonlinearities may not change tractography findings on the population level, subject-specific interpretations may exhibit large fluctuations. A limitation is the lack of comparison with the empirical voxel-wise gradient table correction.

13.
Brain Topogr ; 36(5): 686-697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37393418

RESUMO

BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is a viable non-invasive technique for functional neuroimaging in the cochlear implant (CI) population; however, the effects of acoustic stimulus features on the fNIRS signal have not been thoroughly examined. This study examined the effect of stimulus level on fNIRS responses in adults with normal hearing or bilateral CIs. We hypothesized that fNIRS responses would correlate with both stimulus level and subjective loudness ratings, but that the correlation would be weaker with CIs due to the compression of acoustic input to electric output. METHODS: Thirteen adults with bilateral CIs and 16 with normal hearing (NH) completed the study. Signal-correlated noise, a speech-shaped noise modulated by the temporal envelope of speech stimuli, was used to determine the effect of stimulus level in an unintelligible speech-like stimulus between the range of soft to loud speech. Cortical activity in the left hemisphere was recorded. RESULTS: Results indicated a positive correlation of cortical activation in the left superior temporal gyrus with stimulus level in both NH and CI listeners with an additional correlation between cortical activity and perceived loudness for the CI group. The results are consistent with the literature and our hypothesis. CONCLUSIONS: These results support the potential of fNIRS to examine auditory stimulus level effects at a group level and the importance of controlling for stimulus level and loudness in speech recognition studies. Further research is needed to better understand cortical activation patterns for speech recognition as a function of both stimulus presentation level and perceived loudness.


Assuntos
Córtex Auditivo , Implantes Cocleares , Percepção da Fala , Adulto , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Estimulação Acústica
14.
Neuroimage ; 278: 120277, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37473978

RESUMO

The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) have been well-documented. However, the age effects on the networks of FC between white matter (WM) and GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for assessing network properties in traditional graph models. In this study, we propose a bipartite graph model to characterize the WM-GM FC network and quantify these challenging network properties. Leveraging this model, we assessed the WM-GM FC network properties at multiple scales across 1,462 cognitively normal subjects aged 22-96 years from three repositories (ADNI, BLSA and OASIS-3) and investigated the age effects on these properties throughout adulthood and during late adulthood (age ≥70 years). Our findings reveal that (1) heterogeneous alterations occurred in region-specific WM-GM FC over the adulthood and decline predominated during late adulthood; (2) the FC density of WM bundles engaged in memory, executive function and processing speed declined with age over adulthood, particularly in later years; and (3) the GE of attention, default, somatomotor, frontoparietal and limbic networks reduced with age over adulthood, and GE of visual network declined during late adulthood. These findings provide unpresented insights into multi-scale alterations in networks of WM-GM functional synchronizations during normal aging. Furthermore, our bipartite graph model offers an extendable framework for quantifying WM-engaged networks, which may contribute to a wide range of neuroscience research.


Assuntos
Substância Cinzenta , Substância Branca , Humanos , Adulto , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Envelhecimento , Encéfalo , Substância Branca/diagnóstico por imagem
15.
Brain ; 146(9): 3913-3922, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018067

RESUMO

Epilepsy surgery consists of surgical resection of the epileptic focus and is recommended for patients with drug-resistant focal epilepsy. However, focal brain lesions can lead to effects in distant brain regions. Similarly, the focal resection in temporal lobe epilepsy surgery has been shown to lead to functional changes distant from the resection. Here we hypothesize that there are changes in brain function caused by temporal lobe epilepsy surgery in regions distant from the resection that are due to their structural disconnection from the resected epileptic focus. Therefore, the goal of this study was to localize changes in brain function caused by temporal lobe epilepsy surgery and relate them to the disconnection from the resected epileptic focus. This study takes advantage of the unique opportunity that epilepsy surgery provides to investigate the effects of focal disconnections on brain function in humans, which has implications in epilepsy and broader neuroscience. Changes in brain function from pre- to post-epilepsy surgery were quantified in a group of temporal lobe epilepsy patients (n = 36) using a measure of resting state functional MRI activity fluctuations. We identified regions with significant functional MRI changes that had high structural connectivity to the resected region in healthy controls (n = 96) and patients based on diffusion MRI. The structural disconnection from the resected epileptic focus was then estimated using presurgical diffusion MRI and related to the functional MRI changes from pre- to post-surgery in these regions. Functional MRI activity fluctuations increased from pre- to post-surgery in temporal lobe epilepsy in the two regions most highly structurally connected to the resected epileptic focus in healthy controls and patients-the thalamus and the fusiform gyrus ipsilateral to the side of surgery (PFWE < 0.05). Broader surgeries led to larger functional MRI changes in the thalamus than more selective surgeries (P < 0.05), but no other clinical variables were related to functional MRI changes in either the thalamus or fusiform. The magnitude of the functional MRI changes in both the thalamus and fusiform increased with a higher estimated structural disconnection from the resected epileptic focus when controlling for the type of surgery (P < 0.05). These results suggest that the structural disconnection from the resected epileptic focus may contribute to the functional changes seen after epilepsy surgery. Broadly, this study provides a novel link between focal disconnections in the structural brain network and downstream effects on function in distant brain regions.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Lobo Temporal/patologia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/patologia
16.
Magn Reson Imaging ; 102: 20-25, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36965836

RESUMO

In diffusion weighted MRI (DW-MRI), hardware nonlinearities lead to spatial variations in the orientation and magnitude of diffusion weighting. While the correction of these spatial distortions has been well established for analyses of DW-MRI, the existing voxel-wise empirical correction for gradient nonlinearities requires reimplementation of existing models, as the resultant gradients vary by voxel. Herein, we propose a two-step signal approximation after voxel-wise correction of gradient nonlinearity effects in DW-MRI. The proposed technique (1) scales the diffusion signal and (2) resamples the gradient orientations. This results in uniform gradients across the corrected image and provides the key advantage of seamless integration into current diffusion workflows. We investigated the validity of our technique by fitting a multi-compartment neurite orientation dispersion and density imaging (NODDI) model to the empirical correction and proposed approximation in five subjects from the MASiVar pediatric dataset. We evaluated intra-cellular volume fraction (iVF), CSF volume fraction (cVF), and orientation dispersion index (ODI) from NODDI. The Cohen's d of iVF, cVF and ODI between the techniques was <0.2 indicating the proposed technique does not exhibit significant differences from the voxel-wise correction technique. Our two-step signal approximation is an efficient representation of the voxel-wise gradient table correction. Using this approximation, correction of gradient nonlinearities can be easily incorporated into existing diffusion preprocessing pipelines and is implemented in "PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images".


Assuntos
Imagem de Difusão por Ressonância Magnética , Neuritos , Humanos , Criança , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
17.
Magn Reson Imaging ; 98: 124-131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36632947

RESUMO

In diffusion MRI, gradient nonlinearities cause spatial variations in the magnitude and direction of diffusion gradients. Studies have shown artifacts from these distortions can results in biased diffusion tensor information and tractography. Here, we investigate the impact of gradient nonlinearity correction in the presence of noise. We introduced empirically derived gradient nonlinear fields at different signal-to-noise ratio (SNR) levels in two experiments: tensor field simulation and simulation of the brain. For each experiment, this work compares two techniques empirically: voxel-wise gradient table correction and approximate correction by scaling the signal directly. The impact was assessed through diffusion metrics including mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and principal eigen vector (V1). The study shows (1) the correction of gradient nonlinearities will not lead to substantively incorrect estimation of diffusion metrics in a linear system, (2) gradient nonlinearity correction does not interact adversely with noise, (3) nonlinearity correction suppresses the impact of nonlinearities in typical SNR data, (4) for SNR below 30, the performance of both the gradient nonlinearity correction techniques were similar, and (5) larger impacts are seen in regions where the gradient nonlinearities are distinct. Thus, this study suggests that there were greater beneficial effects than adverse effects due to the correction of nonlinearities. Additionally, correction of nonlinearities is recommended when region of interests are in areas with pronounced nonlinearities.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , Simulação por Computador , Anisotropia
18.
Psychol Med ; 53(1): 160-169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875028

RESUMO

BACKGROUND: Cross-sectional studies indicate that hippocampal function is abnormal across stages of psychosis. Neural theories of psychosis pathophysiology suggest that dysfunction worsens with illness stage. Here, we test the hypothesis that hippocampal function is impaired in the early stage of psychosis and declines further over the next 2 years. METHODS: We measured hippocampal function over 2 years using a scene processing task in 147 participants (76 individuals in the early stage of a non-affective psychotic disorder and 71 demographically similar healthy control individuals). Two-year follow-up was completed in 97 individuals (50 early psychosis, 47 healthy control). Voxelwise longitudinal analysis of activation in response to scenes was carried out within a hippocampal region of interest to test for group differences at baseline and a group by time interaction. RESULTS: At baseline, we observed lower anterior hippocampal activation in the early psychosis group relative to the healthy control group. Contrary to our hypothesis, hippocampal activation remained consistent and did not show the predicted decline over 2 years in the early psychosis group. Healthy controls showed a modest reduction in hippocampal activation after 2 years. CONCLUSIONS: The results of this study suggest that hippocampal dysfunction in early psychosis does not worsen over 2 years and highlight the need for longer-term longitudinal studies.


Assuntos
Imageamento por Ressonância Magnética , Transtornos Psicóticos , Humanos , Seguimentos , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Transtornos Psicóticos/diagnóstico por imagem , Hipocampo/diagnóstico por imagem
19.
Artigo em Inglês | MEDLINE | ID: mdl-36303581

RESUMO

Non-linear gradients impact diffusion weighted (DW) MRI by corrupting the experimental setup and lead to problems during image encoding including the effects in-plane distortion, in-plane shifts, intensity modulations and phase errors. Recent studies have been shown this may present significant complication in the interpretation of results and conclusion while studying tractography and tissue microstructure in data. To interpret the degree in consequences of gradient non-linearities between the desired and achieved gradients, we introduced empirically derived gradient nonlinear fields at different orientations and different tensor properties. The impact is assessed through diffusion tensor properties including mean diffusivity (MD), fractional anisotropy (FA) and principal eigen vector (PEV). The study shows lower FA are more susceptible to LR fields and LR fields with determinant <1 or >1 corrupt tensor more. The corruption can result in significantly different FA based on true-FA and LR field. Apparent MD decreases for negative determinant, on the other hand positive determinant shows the opposite effect. LR field have a larger impact on PEV when FA value is small. The results are dependent on the underlying orientation, non-linear field corruption can cause both increase and decrease of estimated FA, MD and PEV value. This work provides insight into characterizing the non-linear gradient error and aid in selecting correction techniques to address the inaccuracies in b-values.

20.
J Digit Imaging ; 35(6): 1576-1589, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35922700

RESUMO

A robust medical image computing infrastructure must host massive multimodal archives, perform extensive analysis pipelines, and execute scalable job management. An emerging data format standard, the Brain Imaging Data Structure (BIDS), introduces complexities for interfacing with XNAT archives. Moreover, workflow integration is combinatorically problematic when matching large amount of processing to large datasets. Historically, workflow engines have been focused on refining workflows themselves instead of actual job generation. However, such an approach is incompatible with data centric architecture that hosts heterogeneous medical image computing. Distributed automation for XNAT toolkit (DAX) provides large-scale image storage and analysis pipelines with an optimized job management tool. Herein, we describe developments for DAX that allows for integration of XNAT and BIDS standards. We also improve DAX's efficiencies of diverse containerized workflows in a high-performance computing (HPC) environment. Briefly, we integrate YAML configuration processor scripts to abstract workflow data inputs, data outputs, commands, and job attributes. Finally, we propose an online database-driven mechanism for DAX to efficiently identify the most recent updated sessions, thereby improving job building efficiency on large projects. We refer the proposed overall DAX development in this work as DAX-1 (DAX version 1). To validate the effectiveness of the new features, we verified (1) the efficiency of converting XNAT data to BIDS format and the correctness of the conversion using a collection of BIDS standard containerized neuroimaging workflows, (2) how YAML-based processor simplified configuration setup via a sequence of application pipelines, and (3) the productivity of DAX-1 on generating actual HPC processing jobs compared with earlier DAX baseline method. The empirical results show that (1) DAX-1 converting XNAT data to BIDS has similar speed as accessing XNAT data only; (2) YAML can integrate to the DAX-1 with shallow learning curve for users, and (3) DAX-1 reduced the job/assessor generation latency by finding recent modified sessions. Herein, we present approaches for efficiently integrating XNAT and modern image formats with a scalable workflow engine for the large-scale dataset access and processing.


Assuntos
Neuroimagem , Software , Humanos , Encéfalo , Neuroimagem/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA