Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1957): 20211195, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428964

RESUMO

The prevalence of disease-driven mass mortality events is increasing, but our understanding of spatial variation in their magnitude, timing and triggers are often poorly resolved. Here, we use a novel range-wide dataset comprised 48 810 surveys to quantify how sea star wasting disease affected Pycnopodia helianthoides, the sunflower sea star, across its range from Baja California, Mexico to the Aleutian Islands, USA. We found that the outbreak occurred more rapidly, killed a greater percentage of the population and left fewer survivors in the southern half of the species's range. Pycnopodia now appears to be functionally extinct (greater than 99.2% declines) from Baja California, Mexico to Cape Flattery, Washington, USA and exhibited severe declines (greater than 87.8%) from the Salish Sea to the Gulf of Alaska. The importance of temperature in predicting Pycnopodia distribution rose more than fourfold after the outbreak, suggesting latitudinal variation in outbreak severity may stem from an interaction between disease severity and warmer waters. We found no evidence of population recovery in the years since the outbreak. Natural recovery in the southern half of the range is unlikely over the short term. Thus, assisted recovery will probably be required to restore the functional role of this predator on ecologically relevant time scales.


Assuntos
Estrelas-do-Mar , Síndrome de Emaciação , Alaska , Animais , México/epidemiologia , Temperatura
2.
Sci Rep ; 9(1): 15050, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31636286

RESUMO

Extreme climatic events have recently impacted marine ecosystems around the world, including foundation species such as corals and kelps. Here, we describe the rapid climate-driven catastrophic shift in 2014 from a previously robust kelp forest to unproductive large scale urchin barrens in northern California. Bull kelp canopy was reduced by >90% along more than 350 km of coastline. Twenty years of kelp ecosystem surveys reveal the timing and magnitude of events, including mass mortalities of sea stars (2013-), intense ocean warming (2014-2017), and sea urchin barrens (2015-). Multiple stressors led to the unprecedented and long-lasting decline of the kelp forest. Kelp deforestation triggered mass (80%) abalone mortality (2017) resulting in the closure in 2018 of the recreational abalone fishery worth an estimated $44 M and the collapse of the north coast commercial red sea urchin fishery (2015-) worth $3 M. Key questions remain such as the relative roles of ocean warming and sea star disease in the massive purple sea urchin population increase. Science and policy will need to partner to better understand drivers, build climate-resilient fisheries and kelp forest recovery strategies in order to restore essential kelp forest ecosystem services.


Assuntos
Ecossistema , Temperatura Alta , Kelp/fisiologia , Ouriços-do-Mar/fisiologia , Estresse Fisiológico , Animais , California , Geografia , Fatores de Tempo , Água , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA