Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(8): e0272900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939496

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0238876.].

2.
Front Microbiol ; 13: 888908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615498

RESUMO

Apple replant disease (ARD) is a worldwide economic risk in apple cultivation for fruit tree nurseries and fruit growers. Several studies on the reaction of apple plants to ARD are documented but less is known about the genetic mechanisms behind this symptomatology. RNA-seq analysis is a powerful tool for revealing candidate genes that are involved in the molecular responses to biotic stresses in plants. The aim of our work was to find differentially expressed genes in response to ARD in Malus. For this, we compared transcriptome data of the rootstock 'M9' (susceptible) and the wild apple genotype M. ×robusta 5 (Mr5, tolerant) after cultivation in ARD soil and disinfected ARD soil, respectively. When comparing apple plantlets grown in ARD soil to those grown in disinfected ARD soil, 1,206 differentially expressed genes (DEGs) were identified based on a log2 fold change, (LFC) ≥ 1 for up- and ≤ -1 for downregulation (p < 0.05). Subsequent validation revealed a highly significant positive correlation (r = 0.91; p < 0.0001) between RNA-seq and RT-qPCR results indicating a high reliability of the RNA-seq data. PageMan analysis showed that transcripts of genes involved in gibberellic acid (GA) biosynthesis were significantly enriched in the DEG dataset. Most of these GA biosynthesis genes were associated with functions in cell wall stabilization. Further genes were related to detoxification processes. Genes of both groups were expressed significantly higher in Mr5, suggesting that the lower susceptibility to ARD in Mr5 is not due to a single mechanism. These findings contribute to a better insight into ARD response in susceptible and tolerant apple genotypes. However, future research is needed to identify the defense mechanisms, which are most effective for the plant to overcome ARD.

4.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33587112

RESUMO

A soil column split-root experiment was designed to investigate the ability of apple replant disease (ARD)-causing agents to spread in soil. 'M26' apple rootstocks grew into a top layer of Control soil, followed by a barrier-free split-soil layer (Control soil/ARD soil). We observed a severely reduced root growth, concomitant with enhanced gene expression of phytoalexin biosynthetic genes and phytoalexin content in roots from ARD soil, indicating a pronounced local plant defense response. Amplicon sequencing (bacteria, archaea, fungi) revealed local shifts in diversity and composition of microorganisms in the rhizoplane of roots from ARD soil. An enrichment of operational taxonomic units affiliated to potential ARD fungal pathogens (Ilyonectria and Nectria sp.) and bacteria frequently associated with ARD (Streptomyces, Variovorax) was noted. In conclusion, our integrated study supports the idea of ARD being local and not spreading into surrounding soil, as only the roots in ARD soil were affected in terms of growth, phytoalexin biosynthetic gene expression, phytoalexin production and altered microbiome structure. This study further reinforces the microbiological nature of ARD, being likely triggered by a disturbed soil microbiome enriched with low mobility of the ARD-causing agents that induce a strong plant defense and rhizoplane microbiome dysbiosis, concurring with root damage.


Assuntos
Malus , Microbiota , Disbiose , Humanos , Raízes de Plantas , Solo , Microbiologia do Solo
5.
PLoS One ; 15(9): e0238876, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970702

RESUMO

Apple replant disease (ARD) is a serious threat to producers of apple trees and fruits worldwide. The ARD etiology is not unraveled and managing options are either economically not applicable or environmentally harmful. Thus, interest is given in biomarkers that allow to indicate ARD situations at early time points in order to classify soils according to ARD severity but also to analyze the effectiveness to potential countermeasures. This study aimed at (i) identifying ARD biomarkers on the transcriptional level in root tissue by analyzing the expression of previously identified candidate genes in ARD soils of different origin and texture and (ii) testing the specificity of these marker genes to ARD. In vitro propagated M26 plantlets were submitted to a bio-test with three ARD soils, either untreated or disinfected by γ-irradiation. Expression of seven candidate genes identified in a previous transcriptomic study was investigated by RT-qPCR in a time course experiment. Already three days after planting, a prominent upregulation of the phytoalexin biosynthesis genes biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase (B4Hb) was observed in the untreated ARD variants of all three soils. The phytoalexin composition in roots was comparable for all three soils and the total phytoalexin content correlated with the expression of BIS3 and B4Hb. The third promising candidate gene that was upregulated under ARD conditions was the ethylene-responsive transcription factor 1B-like (ERF1B). In a second experiment M26 plantlets were exposed to different abiotic stressors, namely heat, salt and nutrient starvation, and candidate gene expression was determined in the roots. The expression levels of BIS3 and B4Hb were highly and specifically upregulated in ARD soil, but not upon the abiotic stress conditions, whereas ERF1B also showed higher expression under heat stress. In conclusion, BIS3 and B4Hb are recommended as early ARD biomarkers due to their high expression levels and their high specificity.


Assuntos
Marcadores Genéticos , Malus/crescimento & desenvolvimento , Doenças das Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/química , Reação em Cadeia da Polimerase em Tempo Real , Sesquiterpenos/análise , Microbiologia do Solo , Fatores de Transcrição/genética , Fitoalexinas
6.
Front Plant Sci ; 10: 1724, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32180775

RESUMO

Apple replant disease (ARD) is a soil-borne disease, which is of particular importance for fruit tree nurseries and fruit growers. The disease manifests by a poor vegetative development, stunted growth, and reduced yield in terms of quantity and quality, if apple plants (usually rootstocks) are replanted several times at the same site. Genotype-specific differences in the reaction of apple plants to ARD are documented, but less is known about the genetic mechanisms behind this symptomatology. Recent transcriptome analyses resulted in a number of candidate genes possibly involved in the plant response. In the present study, the expression of 108 selected candidate genes was investigated in root and leaf tissue of four different apple genotypes grown in untreated ARD soil and ARD soil disinfected by γ-irradiation originating from two different sites in Germany. Thirty-nine out of the 108 candidate genes were differentially expressed in roots by taking a p-value of < 0.05 and a fold change of > 1.5 as cutoff. Sixteen genes were more than 4.5-fold upregulated in roots of plants grown in ARD soil. The four genes MNL2 (putative mannosidase); ALF5 (multi antimicrobial extrusion protein); UGT73B4 (uridine diphosphate (UDP)-glycosyltransferase 73B4), and ECHI (chitin-binding) were significantly upregulated in roots. These genes seem to be related to the host plant response to ARD, although they have never been described in this context before. Six of the highly upregulated genes belong to the phytoalexin biosynthesis pathway. Their genotype-specific gene expression pattern was consistent with the phytoalexin content measured in roots. The biphenyl synthase (BIS) genes were found to be useful as early biomarkers for ARD, because their expression pattern correlated well with the phenotypic reaction of the Malus genotypes investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA