Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Parasitol ; 38(7): 605-606, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35074260
2.
Genes (Basel) ; 12(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946882

RESUMO

Giardia intestinalis is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of Giardia encystation. This detailed transcriptomic map of encystation confirmed a gradual change of gene expression along the time course of encystation, showing the most significant gene expression changes during late encystation. Few genes are differentially expressed early in encystation, but the major cyst wall proteins CWP-1 and -2 are highly up-regulated already after 3.5 h encystation. Several transcription factors are sequentially up-regulated throughout the process, but many up-regulated genes at 7, 10, and 14 h post-induction of encystation have binding sites in the upstream regions for the Myb2 transcription factor, suggesting that Myb2 is a master regulator of encystation. We observed major changes in gene expression of several meiotic-related genes from 10.5 h of encystation to the cyst stage, and at 17.5 h encystation, there are changes in many different metabolic pathways and protein synthesis. Late encystation, 21 h to cysts, show extensive gene expression changes, most of all in VSP and HCMP genes, which are involved in antigenic variation, and genes involved in chromatin modifications. This high-resolution gene expression map of Giardia encystation will be an important tool in further studies of this important differentiation process.


Assuntos
Giardia lamblia/genética , Encistamento de Parasitas/genética , Expressão Gênica , Giardia lamblia/fisiologia , RNA-Seq
3.
Int J Parasitol ; 51(4): 225-239, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275945

RESUMO

Diarrheal disease caused by Giardia duodenalis is highly prevalent, causing over 200 million cases globally each year. The processes that drive parasite virulence, host immune evasion and transmission involve coordinated gene expression and have been linked to epigenetic regulation. Epigenetic regulatory systems are eukaryote-conserved, including in deep branching excavates such as Giardia, with several studies already implicating histone post-translational modifications in regulation of its pathogenesis and life cycle. However, further insights into Giardia chromatin dynamics have been hindered by a lack of site-specific knowledge of histone modifications. Using mass spectrometry, we have provided the first known molecular map of histone methylation, acetylation and phosphorylation modifications in Giardia core histones. We have identified over 50 previously unreported histone modifications including sites with established roles in epigenetic regulation, and co-occurring modifications indicative of post-translational modification crosstalk. These demonstrate conserved histone modifications in Giardia which are equivalent to many other eukaryotes, and suggest that similar epigenetic mechanisms are in place in this parasite. Further, we used sequence, domain and structural homology to annotate putative histone enzyme networks in Giardia, highlighting representative chromatin modifiers which appear sufficient for identified sites, particularly those from H3 and H4 variants. This study is to our knowledge the first and most comprehensive, complete and accurate view of Giardia histone post-translational modifications to date, and a substantial step towards understanding their associations in parasite development and virulence.


Assuntos
Giardia lamblia , Histonas , Epigênese Genética , Eucariotos/metabolismo , Giardia lamblia/genética , Giardia lamblia/metabolismo , Histonas/genética , Histonas/metabolismo , Espectrometria de Massas , Processamento de Proteína Pós-Traducional
4.
Parasit Vectors ; 13(1): 39, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31973771

RESUMO

BACKGROUND: Feline cryptosporidiosis is an increasing problem, especially in catteries. In humans, close contact with cats could be a potential source of infection although the risk of contracting cryptosporidiosis caused by Cryptosporidium felis is considered to be relatively low. Sequencing of the 60-kDa glycoprotein gene is a commonly used tool for investigation of the genetic diversity and transmission dynamics of Cryptosporidium species. However, until now the sequence of gp60 from C. felis has not been available and genotyping has been limited to less discriminatory markers, such as 18S rRNA, COWP and HSP70. METHODS: We have identified the gp60 orthologue within the genome sequence of C. felis, and used the sequence to design a nested PCR for subtyping purposes. A total of 128 clinical isolates of both feline and human origin, were used to evaluate the marker. RESULTS: Sequence analysis revealed large variations between the different samples. The C. felis gp60 lack the characteristic serine-tract found in many other cryptosporidian orthologues, instead it has an insertion of variable length (361-742 nt). Also, two cases of suspected zoonotic transmission of C. felis between cats and humans were successfully confirmed. CONCLUSIONS: We have identified the gp60 gene in C. felis and show how this highly variable marker can be used in epidemiological investigations.


Assuntos
Antígeno CD48/genética , Criptosporidiose/transmissão , Cryptosporidium/classificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Sequência de Bases , Doenças do Gato/parasitologia , Doenças do Gato/transmissão , Gatos , Criança , Pré-Escolar , Criptosporidiose/genética , Cryptosporidium/genética , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Feminino , Marcadores Genéticos , Variação Genética , Genoma de Protozoário , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Fragmento de Restrição , Alinhamento de Sequência , Adulto Jovem , Zoonoses/parasitologia , Zoonoses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA