Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Rep ; 14(1): 13081, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844477

RESUMO

Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a feasible and effective rescue strategy for prolonged cardiac arrest (CA). However, prolonged total body ischemia and reperfusion can cause microvascular occlusion that prevents organ reperfusion and recovery of function. One hypothesized mechanism of microvascular "no-reflow" is leukocyte adhesion and formation of neutrophil extracellular traps. In this study we tested the hypothesis that a leukocyte filter (LF) or leukocyte modulation device (L-MOD) could reduce NETosis and improve recovery of heart and brain function in a swine model of prolonged cardiac arrest treated with ECPR. Thirty-six swine (45.5 ± 2.5 kg, evenly distributed sex) underwent 8 min of untreated ventricular fibrillation CA followed by 30 min of mechanical CPR with subsequent 8 h of ECPR. Two females were later excluded from analysis due to CPR complications. Swine were randomized to standard care (Control group), LF, or L-MOD at the onset of CPR. NET formation was quantified by serum dsDNA and citrullinated histone as well as immunofluorescence staining of the heart and brain for citrullinated histone in the microvasculature. Primary outcomes included recovery of cardiac function based on cardiac resuscitability score (CRS) and recovery of neurologic function based on the somatosensory evoked potential (SSEP) N20 cortical response. In this model of prolonged CA treated with ECPR we observed significant increases in serum biomarkers of NETosis and immunohistochemical evidence of microvascular NET formation in the heart and brain that were not reduced by LF or L-MOD therapy. Correspondingly, there were no significant differences in CRS and SSEP recovery between Control, LF, and L-MOD groups 8 h after ECPR onset (CRS = 3.1 ± 2.7, 3.7 ± 2.6, and 2.6 ± 2.6 respectively; p = 0.606; and SSEP = 27.9 ± 13.0%, 36.7 ± 10.5%, and 31.2 ± 9.8% respectively, p = 0.194). In this model of prolonged CA treated with ECPR, the use of LF or L-MOD therapy during ECPR did not reduce microvascular NETosis or improve recovery of myocardial or brain function. The causal relationship between microvascular NETosis, no-reflow, and recovery of organ function after prolonged cardiac arrest treated with ECPR requires further investigation.


Assuntos
Reanimação Cardiopulmonar , Modelos Animais de Doenças , Parada Cardíaca , Animais , Parada Cardíaca/terapia , Reanimação Cardiopulmonar/métodos , Suínos , Feminino , Masculino , Oxigenação por Membrana Extracorpórea/métodos , Leucócitos , Armadilhas Extracelulares/metabolismo , Procedimentos de Redução de Leucócitos/métodos
2.
JTCVS Open ; 18: 91-103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38690428

RESUMO

Objective: Donor hearts procured after circulatory death (DCD) may significantly increase the number of hearts available for transplantation. The purpose of this study was to analyze current DCD and brain-dead donor (DBD) heart transplantation rates and characterize organ refusal using the most up-to-date United Network for Organ Sharing (UNOS) and Organ Procurement and Transplantation Network data. Methods: We analyzed UNOS and Organ Procurement and Transplantation Network DBD and DCD candidate, transplantation, and demographic data from 2020 through 2022 and 2022 refusal code data to characterize DCD heart use and refusal. Subanalyses were performed to characterize DCD donor demographics and regional transplantation rate variance. Results: DCD hearts were declined 3.37 times more often than DBD hearts. The most frequently used code for DCD refusal was neurologic function, related to concerns of a prolonged dying process and organ preservation. In 2022, 92% (1329/1452) of all DCD refusals were attributed to neurologic function. When compared with DBD, DCD donor hearts were more frequently declined as the result of prolonged warm ischemic time (odds ratio, 5.65; 95% confidence interval, 4.07-7.86) and other concerns over organ preservation (odds ratio, 4.06; 95% confidence interval, 3.33-4.94). Transplantation rate variation was observed between demographic groups and UNOS regions. DCD transplantation rates are currently experiencing second order polynomial growth. Conclusions: DCD donor hearts are declined more frequently than DBD. DCD heart refusals result from concerns over a prolonged dying process and organ preservation. Heart transplantation rates may be substantially improved by ex situ hemodynamic assessment, adoption of normothermic regional perfusion guidelines, and quality initiatives.

3.
Front Cardiovasc Med ; 11: 1325169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638886

RESUMO

Cold static storage (CSS) for up to 6 h is the gold standard in heart preservation. Although some hearts stored over 6 h have been transplanted, longer CSS times have increased posttransplant morbimortality. Transmedics® Organ Care System (OCS™) is the only FDA-approved commercial system that provides an alternative to CSS using normothermic ex situ heart perfusion (NEHP) in resting mode with aortic perfusion (Langendorff method). However, it is also limited to 6 h and lacks an objective assessment of cardiac function. Developing a system that can perfuse hearts under NEHP conditions for >24 h can facilitate organ rehabilitation, expansion of the donor pool, and objective functional evaluation. The Extracorporeal Life Support Laboratory at the University of Michigan has worked to prolong NEHP to >24 h with an objective assessment of heart viability during NEHP. An NEHP system was developed for aortic (Langendorff) perfusion using a blood-derived perfusate (leukocyte/thrombocyte-depleted blood). Porcine hearts (n = 42) of different sizes (6-55 kg) were divided into five groups and studied during 24 h NEHP with various interventions in three piglets (small-size) heart groups: (1) Control NEHP without interventions (n = 15); (2) NEHP + plasma exchange (n = 5); (3) NEHP + hemofiltration (n = 10) and two adult-size (juvenile pigs) heart groups (to demonstrate the support of larger hearts); (4) NEHP + hemofiltration (n = 5); and (5) NEHP with intermittent left atrial (iLA) perfusion (n = 7). All hearts with NEHP + interventions (n = 27) were successfully perfused for 24 h, whereas 14 (93.3%) control hearts failed between 10 and 21 h, and 1 control heart (6.6%) lasted 24 h. Hearts in the piglet hemofiltration and plasma exchange groups performed better than those in the control group. The larger hearts in the iLA perfusion group (n = 7) allowed for real-time heart functional assessment and remained stable throughout the 24 h of NEHP. These results demonstrate that heart preservation for 24 h is feasible with our NEHP perfusion technique. Increasing the preservation period beyond 24 h, infection control, and nutritional support all need optimization. This proves the concept that NEHP has the potential to increase the organ pool by (1) considering previously discarded hearts; (2) performing an objective assessment of heart function; (3) increasing the donor/recipient distance; and (4) developing heart-specific perfusion therapies.

4.
Perfusion ; : 2676591241240725, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519444

RESUMO

INTRODUCTION: A radical paradigm shift in the treatment of premature infants failing conventional treatment is to recreate fetal physiology using an extracorporeal Artificial Placenta (AP). The aim of this study is to evaluate the effects of changing fetal hemoglobin percent (HbF%) on physiology and circuit function during AP support in an ovine model. METHODS: Extremely premature lambs (n = 5) were delivered by cesarean section at 117-121 d estimated gestational age (EGA) (term = 145d), weighing 2.5 ± 0.35 kg. Lambs were cannulated using 10-14Fr cannulae for drainage via the right jugular vein and reinfusion via the umbilical vein. Lambs were intubated and lungs were filled with perfluorodecalin to a meniscus with a pressure of 5-8 cm H2O. The first option for transfusion was fetal whole blood from twins followed by maternal red blood cells. Arterial blood gases were used to titrate AP support to maintain fetal blood gas values. RESULTS: The mean survival time on circuit was 119.6 ± 39.5 h. Hemodynamic parameters and lactate were stable throughout. As more adult blood transfusions were given to maintain hemoglobin at 10 mg/dL, the HbF% declined, reaching 40% by post operative day 7. The HbF% was inversely proportional to flow rates as higher flows were required to maintain adequate oxygen saturation and perfusion. CONCLUSIONS: Transfusion of adult blood led to decreased fetal hemoglobin concentration during AP support. The HbF% was inversely proportional to flow rates. Future directions include strategies to decrease the priming volume and establishing a fetal blood bank to have blood rich in HbF.

5.
Transplantation ; 108(6): 1350-1356, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411562

RESUMO

BACKGROUND: Cold static storage and normothermic ex vivo heart perfusion are routinely limited to 6 h. This report describes intermittent left atrial (LA) perfusion that allows cardiac functional assessment in a working heart mode. METHODS: Using our adult porcine model, general anesthesia was induced and a complete cardiectomy was performed following cardioplegic arrest. Back-table instrumentation was completed and normothermic ex vivo heart perfusion (NEHP) was initiated in a nonworking heart mode (Langendorff). After 1 h of resuscitation and recovery, LA perfusion was initiated and the heart was transitioned to a coronary flow-only working heart mode for 30 min. Baseline working heart parameters were documented and the heart was returned to nonworking mode. Working heart assessments were performed for 30 min every 6 h for 24 h. RESULTS: Twenty-four-hour NEHP on 9 consecutive hearts (280 ±â€…42.1 g) was successful and no significant differences were found between working heart parameters at baseline and after 24 h of perfusion. There was no difference between initial and final measurements of LA mean pressures (5.0 ±â€…3.1 versus 9.0 ±â€…6.5 mm Hg, P  = 0.22), left ventricular systolic pressures (44.3 ±â€…7.2 versus 39.1 ±â€…9.0 mm Hg, P  = 0.13), mean aortic pressures (30.9 ±â€…5.8 versus 28.1 ±â€…8.1 mm Hg, P  = 0.37), and coronary resistance (0.174 ±â€…0.046 versus 0.173 ±â€…0.066 mL/min/g, P  = 0.90). There were also no significant differences between lactate (2.4 ±â€…0.5 versus 2.6 ±â€…0.4 mmol/L, P  = 0.17) and glucose (173 ±â€…75 versus 156 ±â€…70 mg/dL, P  = 0.37). CONCLUSIONS: A novel model using intermittent LA perfusion to create a coronary flow-only working heart mode for assessment of ex vivo cardiac function has been successfully developed.


Assuntos
Modelos Animais , Perfusão , Animais , Perfusão/métodos , Fatores de Tempo , Preparação de Coração Isolado , Suínos , Circulação Coronária , Preservação de Órgãos/métodos , Função Ventricular Esquerda , Transplante de Coração , Sus scrofa
6.
Pediatr Res ; 95(1): 93-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37087539

RESUMO

BACKGROUND: Clinical translation of the extracorporeal artificial placenta (AP) is impeded by the high risk for intracranial hemorrhage in extremely premature newborns. The Nitric Oxide Surface Anticoagulation (NOSA) system is a novel non-thrombogenic extracorporeal circuit. This study aims to test the NOSA system in the AP without systemic anticoagulation. METHODS: Ten extremely premature lambs were delivered and connected to the AP. For the NOSA group, the circuit was coated with DBHD-N2O2/argatroban, 100 ppm nitric oxide was blended into the sweep gas, and no systemic anticoagulation was given. For the Heparin control group, a non-coated circuit was used and systemic anticoagulation was administered. RESULTS: Animals survived 6.8 ± 0.6 days with normal hemodynamics and gas exchange. Neither group had any hemorrhagic or thrombotic complications. ACT (194 ± 53 vs. 261 ± 86 s; p < 0.001) and aPTT (39 ± 7 vs. 69 ± 23 s; p < 0.001) were significantly lower in the NOSA group than the Heparin group. Platelet and leukocyte activation did not differ significantly from baseline in the NOSA group. Methemoglobin was 3.2 ± 1.1% in the NOSA group compared to 1.6 ± 0.6% in the Heparin group (p < 0.001). CONCLUSIONS: The AP with the NOSA system successfully supported extremely premature lambs for 7 days without significant bleeding or thrombosis. IMPACT: The Nitric Oxide Surface Anticoagulation (NOSA) system provides effective circuit-based anticoagulation in a fetal sheep model of the extracorporeal artificial placenta (AP) for 7 days. The NOSA system is the first non-thrombogenic circuit to consistently obviate the need for systemic anticoagulation in an extracorporeal circuit for up to 7 days. The NOSA system may allow the AP to be implemented clinically without systemic anticoagulation, thus greatly reducing the intracranial hemorrhage risk for extremely low gestational age newborns. The NOSA system could potentially be applied to any form of extracorporeal life support to reduce or avoid systemic anticoagulation.


Assuntos
Oxigenação por Membrana Extracorpórea , Nascimento Prematuro , Trombose , Gravidez , Humanos , Feminino , Ovinos , Animais , Óxido Nítrico , Placenta/fisiologia , Heparina , Hemorragia/complicações , Trombose/prevenção & controle , Anticoagulantes/farmacologia , Hemorragias Intracranianas/complicações
7.
J Pediatr Surg ; 59(1): 103-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858393

RESUMO

BACKGROUND: Children with end-stage lung disease are commonly managed with extracorporeal life support (ECLS) as a bridge to lung transplantation. A pumpless artificial lung (MLung) is a portable alternative to ECLS and it allows for ambulation. Both ECLS and pumpless artificial lungs require systemic anticoagulation which is associated with hemorrhagic complications. We tested the MLung with a novel Nitric Oxide (NO) Surface Anticoagulation (NOSA) system, to provide local anticoagulation for 72 h of support in a pediatric-size ovine model. METHODS: Four mini sheep underwent thoracotomy and cannulation of the pulmonary artery (inflow) and left atrium (outflow), recovered and were monitored for 72hr. The circuit tubing and connectors were coated with the combination of an NO donor (diazeniumdiolated dibutylhexanediamine; DBHD-N2O2) and argatroban. The animals were connected to the MLung and 100 ppm of NO was added to the sweep gas. Systemic hemodynamics, blood chemistry, blood gases, and methemoglobin were collected. RESULTS: Mean device flow was 836 ± 121 mL/min. Device outlet saturation was 97 ± 4%. Pressure drop across the lung was 3.5 ± 1.5 mmHg and resistance was 4.3 ± 1.7 mmHg/L/min. Activated clotting time averaged 170 ± 45s. Methemoglobin was 2.9 ± 0.8%. Platelets declined from 590 ± 101 at baseline to 160 ± 90 at 72 h. NO flux (x10-10 mol/min/cm2) of the NOSA circuit averaged 2.8 ± 0.6 (before study) and 1.9 ± 0.1 (72 h) and across the MLung 18 ± 3 NO flux was delivered. CONCLUSION: The MLung is a more portable form of ECLS that demonstrates effective gas exchange for 72 h without hemodynamic changes. Additionally, the NOSA system successfully maintained local anticoagulation without evidence of systemic effects.


Assuntos
Oxigenação por Membrana Extracorpórea , Óxido Nítrico , Animais , Humanos , Ovinos , Criança , Metemoglobina , Pulmão , Hemodinâmica , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
8.
Transplant Proc ; 55(9): 2241-2246, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783593

RESUMO

BACKGROUND: Historically, cardiac transplantation relied on cold static storage at 5 °C for ex vivo myocardial preservation. Currently, machine perfusion is the standard of care at many transplant centers. These storage methods are limited to 12 hours. We sought to evaluate the efficacy of hemofiltration and filtrate replacement in adult porcine hearts using normothermic heart perfusion (NEVHP) for 24 hours. METHODS: We performed 24-hour NEVHP on 5 consecutive hearts. After anesthetic induction, sternotomy, cardioplegia administration, explantation, and back-table instrumentation, NEVHP was initiated in beating, unloaded mode. After 1 hour, plasma exchange was performed, and hemofiltration was initiated. Heart function parameters and arterial blood gasses were obtained hourly. RESULTS: All hearts (n = 5) were viable at the 24-hour mark. The average left ventricular systolic pressure at the beginning of the prep was 36.6 ± 7.9 mm Hg compared with 27 ± 5.5 mm Hg at the end. Coronary resistance at the beginning of prep was 0.79 ± 0.10 mm Hg/L/min and 0.93 ± 0.28 mm Hg/L/min at the end. Glucose levels averaged 223 ± 13.9 mg/dL, and the lactate average at the termination of prep was 2.6 ± 0.3 mmol/L. CONCLUSIONS: We successfully perfused adult porcine hearts at normothermic temperatures for 24 hours with results comparable to our pediatric porcine heart model. The next step in our research is NEVHP evaluation in a working mode using left atrial perfusion.


Assuntos
Transplante de Coração , Hemofiltração , Humanos , Adulto , Criança , Suínos , Animais , Coração , Transplante de Coração/métodos , Perfusão/métodos , Ácido Láctico , Preservação de Órgãos/métodos
10.
Crit Care Explor ; 5(5): e0902, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181541

RESUMO

Prolonged cardiac arrest (CA) causes microvascular thrombosis which is a potential barrier to organ reperfusion during extracorporeal cardiopulmonary resuscitation (ECPR). The aim of this study was to test the hypothesis that early intra-arrest anticoagulation during cardiopulmonary resuscitation (CPR) and thrombolytic therapy during ECPR improve recovery of brain and heart function in a porcine model of prolonged out-of-hospital CA. DESIGN: Randomized interventional trial. SETTING: University laboratory. SUBJECTS: Swine. INTERVENTIONS: In a blinded study, 48 swine were subjected to 8 minutes of ventricular fibrillation CA followed by 30 minutes of goal-directed CPR and 8 hours of ECPR. Animals were randomized into four groups (n = 12) and given either placebo (P) or argatroban (ARG; 350 mg/kg) at minute 12 of CA and either placebo (P) or streptokinase (STK, 1.5 MU) at the onset of ECPR. MEASUREMENTS AND MAIN RESULTS: Primary outcomes included recovery of cardiac function measured by cardiac resuscitability score (CRS: range 0-6) and recovery of brain function measured by the recovery of somatosensory-evoked potential (SSEP) cortical response amplitude. There were no significant differences in recovery of cardiac function as measured by CRS between groups (p = 0.16): P + P 2.3 (1.0); ARG + P = 3.4 (2.1); P + STK = 1.6 (2.0); ARG + STK = 2.9 (2.1). There were no significant differences in the maximum recovery of SSEP cortical response relative to baseline between groups (p = 0.73): P + P = 23% (13%); ARG + P = 20% (13%); P + STK = 25% (14%); ARG + STK = 26% (13%). Histologic analysis demonstrated reduced myocardial necrosis and neurodegeneration in the ARG + STK group relative to the P + P group. CONCLUSIONS: In this swine model of prolonged CA treated with ECPR, early intra-arrest anticoagulation during goal-directed CPR and thrombolytic therapy during ECPR did not improve initial recovery of heart and brain function but did reduce histologic evidence of ischemic injury. The impact of this therapeutic strategy on the long-term recovery of cardiovascular and neurological function requires further investigation.

11.
ASAIO J ; 69(7): e301-e307, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146595

RESUMO

Portable artificial lung (AL) systems are under development, but there are few technologies available that adjust the carbon dioxide (CO 2 ) removal in response to changes in patient metabolic needs. Our work describes the second generation of a CO 2 -based portable servoregulation system that automatically adjusts CO 2 removal in ALs. Four adult sheep (68 ± 14.3 kg) were used to test the servoregulator. The servoregulator controlled air sweep flow through the lung to meet a target exhaust gas CO 2 (tEGCO 2 ) level in normocapnic and hypercapnic (arterial partial pressure of CO 2 [PaCO 2 ] >60 mm Hg) conditions at varying flow rates (0.5-1.5 L/min) and at tEGCO 2 levels of 10, 20, and 40 mm Hg. In hypercapnic sheep, average post-AL blood partial pressure of CO 2 (pCO 2 ) values were 22.4 ± 3.6 mm Hg for tEGCO 2 of 10 mm Hg, 28.0 ± 4.1 mm Hg for tEGCO 2 of 20 mm Hg and 40.6 ± 4.8 mm Hg for tEGCO 2 of 40 mm Hg. The controller successfully and automatically adjusted the sweep gas flow to rapidly (<10 minutes) meet the tEGCO 2 level when challenged with changes in inlet blood flow or target EGCO 2 levels for all animals. These in vivo data demonstrate an important step toward portable ALs that can automatically modulate CO 2 removal and allow for substantial changes in patient activity or disease status in ambulatory applications.


Assuntos
Oxigenação por Membrana Extracorpórea , Hemodinâmica , Animais , Ovinos , Dióxido de Carbono , Hipercapnia , Pulmão/metabolismo
12.
ASAIO J ; 68(10): 1282-1289, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194099

RESUMO

Currently, normothermic ex vivo heart perfusion (NEVHP) is limited to 6-12 hours. NEVHP for 24 hours or more would allow organ treatment, assessment of organ function, and near-perfect recipient matching. We present a model of NEVHP using continuous hemofiltration (HFn) with sustained myocardial viability up to 24 hours. Twenty hearts from 6-10 kg piglets were procured and maintained on our NEVHP circuit. HFn hearts (n = 10) underwent NEVHP with HFn, whereas controls (n = 10) used NEVHP alone. All HFn vs. four controls were viable at 24 h (p = 0.004). At end perfusion, HFn hearts had higher left ventricular systolic pressure (51.5 ± 6.8 mm Hg, 38.3 ± 5.2 mm Hg, p = 0.05), lower coronary resistance (0.83 ± 0.11 mm Hg/mL/min, 1.18 ± 0.21mmHg/mL/min, p < 0.05), and lower serum lactate levels (2.9 ± 0.4 mmol/L, 4.1 ± 0.6 mmol/L, p < 0.0001) when compared to control hearts. HFn hearts also had less extensive myocardial damage and significantly less edema than control hearts with lower weight gain and wet-dry ratios. Using our circuit, NEVHP for 24 hours is possible with HFn and allows for preservation of myocardial function, improved tissue viability, decreased tissue edema, and less myocardial injury.


Assuntos
Transplante de Coração , Hemofiltração , Animais , Edema , Coração , Lactatos , Miocárdio , Preservação de Órgãos , Perfusão , Suínos
13.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290561

RESUMO

Artificial lung (AL) systems provide respiratory support to patients with severe lung disease, but none can adapt to the changing respiratory needs of the patients. Precisely, none can automatically adjust carbon dioxide (CO2) removal from the blood in response to changes in patient activity or disease status. Because of this, all current systems limit patient comfort, activity level, and rehabilitation. A portable servoregulation controller that automatically modulates CO2 removal in ALs to meet the real-time metabolic demands of the patient is described. The controller is based on a proportional-integral-derivative (PID) based closed-loop feedback control system that modulates sweep gas (air) flow through the AL to maintain a target exhaust gas CO2 partial pressure (target EGCO2 or tEGCO2). The presented work advances previous research by (1) using gas-side sensing that avoids complications and clotting associated with blood-based sensors, (2) incorporating all components into a portable, battery-powered package, and (3) integrating smart moisture removal from the AL to enable long term operation. The performance of the controller was tested in vitro for ∼12 h with anti-coagulated bovine blood and 5 days with distilled water. In tests with blood, the sweep gas flow was automatically adjusted by the controller rapidly (<2 min) meeting the specified tEGCO2 level when confronted with changes in inlet blood partial pressure of CO2 (pCO2) levels at various AL blood flows. Overall, the CO2 removal from the AL showed a strong correlation with blood flow rate and blood pCO2 levels. The controller successfully operated continuously for 5 days when tested with water. This study demonstrates an important step toward ambulatory AL systems that automatically modulate CO2 removal as required by lung disease patients, thereby allowing for physiotherapy, comfort, and activity.

14.
J Pediatr Surg ; 57(11): 614-623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35953340

RESUMO

INTRODUCTION: For children with end-stage lung disease that cannot wean from extracorporeal life support (ECLS), a wearable artificial lung would permit extubation and provide a bridge to recovery or transplantation. We evaluate the function of the novel Pediatric MLung-a low-resistance, pumpless artificial lung developed specifically for children-in healthy animal subjects. METHODS: Adolescent "mini sheep" weighing 12-20 kg underwent left thoracotomy, cannulation of the main pulmonary artery (PA; inflow) and left atrium (outflow), and connection to the MLung. RESULTS: Thirteen sheep were studied; 6 were supported for 7 days. Mean PA pressure was 23.9 ± 6.9 mmHg. MLung blood flow was 633±258 mL/min or 30.0 ± 16.0% of CO. MLung pressure drop was 4.4 ± 3.4 mmHg. Resistance was 7.2 ± 5.2 mmHg/L/min. Device outlet oxygen saturation was 99.0 ± 3.3% with inlet saturation 53.8 ± 7.3%. Oxygen delivery was 41.1 ± 18.4 mL O2/min (maximum 84.9 mL/min) or 2.8 ± 1.5 mL O2/min/kg. Platelet count significantly decreased; no platelet transfusions were required. Plasma free hemoglobin significantly increased only on day 7, at which point 2 of the animals had plasma free hemoglobin levels above 50 mg/dL. CONCLUSION: The MLung provides adequate gas exchange at appropriate blood flows for the pediatric population in a PA-to-LA configuration. Further work remains to improve the biocompatibility of the device. LEVEL OF EVIDENCE: N/A.


Assuntos
Órgãos Artificiais , Oxigenação por Membrana Extracorpórea , Animais , Criança , Hemoglobinas , Humanos , Pulmão , Oxigênio , Ovinos
15.
ASAIO J ; 68(8): 1071-1073, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905308

RESUMO

A pumpless artificial lung has the potential to provide a bridge to recovery or transplantation in children with respiratory failure. Pulmonary artery inflow and left atrial outflow are necessary for low-gradient, pumpless systems; however, long-term cannulation of the fragile left atrium remains problematic. In this technique, the left atrium and pulmonary artery were exposed through a left anterior thoracotomy. Inflow to the artificial lung was created using an end-to-side anastomosis with the pulmonary artery. Device outflow was established through the left atrium. A single-stage venous cannula was passed through a free PTFE graft. Using polypropylene with pledgets, two concentric purse-string sutures were placed in the dome of the left atrium. The venous cannula was inserted. The graft was slid down the cannula and circumferentially secured to the adjacent left atrial tissue and pledgets. The other end of the graft was secured to the cannula with silk ties. The procedure was successful in 10 sheep. Initial device blood flow was 969 ± 222 ml/min, which remained stable for up to 7 days with no anastomotic complications. This is an effective method of achieving secure, long-term left atrial cannulation without cardiopulmonary bypass for use in a low-resistance, pumpless artificial lung. And, most importantly, improves the ease and safety of cannula replacement and final decannulation when AL support is no longer required.


Assuntos
Cateterismo , Coração Auxiliar , Animais , Ponte Cardiopulmonar , Átrios do Coração/cirurgia , Pulmão , Ovinos
16.
ASAIO J ; 68(7): 949-955, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35383597

RESUMO

The artificial placenta (AP) promotes organ development and reduces organ injury in a lamb model of extreme prematurity. This study evaluates hepatic outcomes after AP support with total parenteral nutrition (TPN) administration. Premature lambs (116-121 days estimated gestational age; term = 145) were cannulated for 7 days of AP support. Lambs received TPN with SMOFlipid (n = 7) or Intralipid (n = 5). Liver function and injury were compared between the two groups biochemically and histologically. Groups were compared by ANOVA with Tukey's multiple comparisons or linear-mixed effects models. From baseline to day 7, total bilirubin (Intralipid 2.6 ± 2.3 to 7.9 ± 4.4 mg/dl; SMOFlipid 0.3 ± 0.1 to 5.5 ± 2.3 mg/dl), alanine aminotransferase, and gamma-glutamyl transferase increased in both groups ( p < 0.001 for all). Direct bilirubin (0.3 ± 0.2 to 1.8 ± 1.4 mg/dl; p = 0.006) and AST (27 ± 5 to 309 ± 242 mg/dl; p < 0.001) increased in SMOFlipid group (not measured in Intralipid group). On liver histology, Intralipid showed more cholestasis than SMOFlipid; both groups showed more than tissue controls. The Intralipid group alone showed hepatocyte injury and had more congestion than controls. Lambs supported by the AP with TPN administration maintain normal hepatic function and sustain minimal hepatic injury. SMOFlipid is associated with decreased cholestasis and hepatic injury versus Intralipid.


Assuntos
Colestase , Nutrição Parenteral Total , Animais , Bilirrubina , Feminino , Nutrição Parenteral Total/efeitos adversos , Placenta , Gravidez , Ovinos , Carneiro Doméstico
17.
J Thorac Cardiovasc Surg ; 164(1): 128-138, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33485659

RESUMO

OBJECTIVE: Cross-circulation of plasma from a paracorporeal animal allows successful ex vivo heart perfusion (EVHP) for 3 days. Little is known about the feasibility of prolonged EVHP without a paracorporeal animal. These experiments evaluated plasma exchange (PX) that infuses fresh plasma, whereas an equal amount is removed to replace paracorporeal cross-circulation. METHODS: Ten hearts were procured from 8 to 10 kg piglets and maintained with EVHP. The EVHP circuit was primed with platelet- and leukocyte-reduced blood. Plasma obtained from stored porcine blood (4°C for ≤7 days) was infused and removed with a plasma separator at 1 mL/h/g cardiac tissue (n = 5) in the PX group. Controls (n = 5) used the same EVHP without PX. Antegrade aortic perfusion was adjusted to reach physiologic coronary flow of 0.7 to 1.2 mL/min/g, normothermia (37°C), and hemoglobin ≥8 g/dL. Viability was assessed by hemodynamic metrics, metabolic assays, and histopathology. RESULTS: All PX hearts remained viable for 24 hours compared with only 1 control (P = .015). Coronary resistance was higher in the PX versus controls (1.06 ± 0.06 mm Hg/mL/min; 0.58 ± 0.02 mm Hg/mL/min [P < .05]). Lactate levels were lower in PX (2.8-4.2 mmol/L) versus controls (3.6-7.6 mmol/L) (P < .05). PX demonstrated a trend toward preservation of left ventricle systolic pressure (63.0 ± 10.9 mm Hg) versus controls (37 ± 22.0 mm Hg) (P > .05). In mixed effect models, oxygen consumption was higher with PX (P < .05). Histopathologic evaluation confirmed extensive myocardial degeneration and worse interstitial edema in controls. CONCLUSIONS: These results demonstrate that EVHP can be successfully maintained for at least 24 hours using continuous PX. This eliminates the need for a paracorporeal animal and provides an important step toward clinical application.


Assuntos
Transplante de Coração , Preservação de Órgãos , Animais , Coração/fisiologia , Humanos , Preservação de Órgãos/métodos , Perfusão/efeitos adversos , Perfusão/métodos , Troca Plasmática , Suínos
18.
ASAIO J ; 68(5): 698-706, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34380953

RESUMO

A laptop-driven, benchtop control system that automatically adjusts carbon dioxide (CO2) removal in artificial lungs (ALs) is described. The proportional-integral-derivative (PID) feedback controller modulates pump-driven air sweep gas flow through an AL to achieve a desired exhaust gas CO2 partial pressure (EGCO2). When EGCO2 increases, the servoregulator automatically and rapidly increases sweep flow to remove more CO2. If EGCO2 decreases, the sweep flow decreases to reduce CO2 removal. System operation was tested for 6 hours in vitro using bovine blood and in vivo in three proof-of-concept sheep experiments. In all studies, the controller automatically adjusted the sweep gas flow to rapidly (<1 minute) meet the specified EGCO2 level when challenged with changes in inlet blood or target EGCO2 levels. CO2 removal increased or decreased as a function of arterial pCO2 (PaCO2). Such a system may serve as a controller in wearable AL systems that allow for large changes in patient activity or disease status.


Assuntos
Oxigenação por Membrana Extracorpórea , Dispositivos Eletrônicos Vestíveis , Animais , Gasometria , Dióxido de Carbono , Bovinos , Humanos , Pulmão/cirurgia , Respiração Artificial , Ovinos
19.
Transplantation ; 105(5): 986-998, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031222

RESUMO

For 2 centuries, researchers have studied ex vivo perfusion intending to preserve the physiologic function of isolated organs. If it were indeed possible to maintain ex vivo organ viability for days, transplantation could become an elective operation with clinicians methodically surveilling and reconditioning allografts before surgery. To this day, experimental reports of successfully prolonged (≥24 hours) organ perfusion are rare and have not translated into clinical practice. To identify the crucial factors necessary for successful perfusion, this review summarizes the history of prolonged normothermic ex vivo organ perfusion. By examining successful techniques and protocols used, this review outlines the essential elements of successful perfusion, limitations of current perfusion systems, and areas where further research in preservation science is required.


Assuntos
Preservação de Órgãos , Transplante de Órgãos , Perfusão , Temperatura , Animais , Humanos , Técnicas de Cultura de Órgãos , Preservação de Órgãos/efeitos adversos , Transplante de Órgãos/efeitos adversos , Perfusão/efeitos adversos , Fatores de Tempo , Sobrevivência de Tecidos , Coleta de Tecidos e Órgãos
20.
PLoS One ; 15(12): e0243601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301512

RESUMO

BACKGROUND: Current limitations in the supply of ventilators during the Covid19 pandemic have limited respiratory support for patients with respiratory failure. Split ventilation allows a single ventilator to be used for more than one patient but is not practicable due to requirements for matched patient settings, risks of cross-contamination, harmful interference between patients and the inability to individualize ventilator support parameters. We hypothesized that a system could be developed to circumvent these limitations. METHODS AND FINDINGS: A novel delivery system was developed to allow individualized peak inspiratory pressure settings and PEEP using a pressure regulatory valve, developed de novo, and an inline PEEP 'booster'. One-way valves, filters, monitoring ports and wye splitters were assembled in-line to complete the system and achieve the design targets. This system was then tested to see if previously described limitations could be addressed. The system was investigated in mechanical and animal trials (ultimately with a pig and sheep concurrently ventilated from the same ventilator). The system demonstrated the ability to provide ventilation across clinically relevant scenarios including circuit occlusion, unmatched physiology, and a surgical procedure, while allowing significantly different pressures to be safely delivered to each animal for individualized support. CONCLUSIONS: In settings of limited ventilator availability, systems can be developed to allow increased delivery of ventilator support to patients. This enables more rapid deployment of ventilator capacity under constraints of time, space and financial cost. These systems can be smaller, lighter, more readily stored and more rapidly deployable than ventilators. However, optimizing ventilator support for patients with individualized ventilation parameters will still be dependent upon ease of use and the availability of medical personnel.


Assuntos
Respiração Artificial/instrumentação , Ventiladores Mecânicos , Animais , Desenho de Equipamento , Feminino , Humanos , Masculino , Pressão , Ovinos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA