Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Fungi (Basel) ; 10(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535218

RESUMO

One of the systems responsible for the recognition and repair of mistakes occurring during cell replication is the DNA mismatch repair (MMR) system. Two major protein complexes constitute the MMR pathway: MutS and MutL. Here, we investigated the possible relation of four A. fumigatus MMR genes (msh2, msh6, pms1, and mlh1) with the development of azole resistance related to the phenomenon of multi-drug resistance. We examined the MMR gene variations in 163 Aspergillus fumigatus genomes. Our analysis showed that genes msh2, pms1, and mlh1 have low genetic variability and do not seem to correlate with drug resistance. In contrast, there is a nonsynonymous mutation (G240A) in the msh6 gene that is harbored by 42% of the strains, most of them also harboring the TR34/L98H azole resistance mechanism in cyp51A. The msh6 gene was deleted in the akuBKU80A. fumigatus strain, and the ∆msh6 isolates were analyzed for fitness, azole susceptibility, and virulence capacity, showing no differences compared with the akuBKU80 parental strain. Wild-type msh6 and Δmsh6 strains were grown on high concentrations of azole and other non-azole fungicides used in crop protection. A 10- and 2-fold higher mutation frequency in genes that confer resistance to boscalid and benomyl, respectively, were observed in Δmsh6 strains compared to the wild-type. This study suggests a link between Msh6 and fungicide resistance acquisition.

2.
Microbiol Spectr ; : e0477022, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912663

RESUMO

Aspergillus fumigatus is a filamentous fungus that can infect the lungs of patients with immunosuppression and/or underlying lung diseases. The mortality associated with chronic and invasive aspergillosis infections remain very high, despite availability of antifungal treatments. In the last decade, there has been a worrisome emergence and spread of resistance to the first-line antifungals, the azoles. The mortality caused by resistant isolates is even higher, and patient management is complicated as the therapeutic options are reduced. Nevertheless, treatment failure is also common in patients infected with azole-susceptible isolates, which can be due to several non-mutually exclusive reasons, such as poor drug absorption. In addition, the phenomena of tolerance or persistence, where susceptible pathogens can survive the action of an antimicrobial for extended periods, have been associated with treatment failure in bacterial infections, and their occurrence in fungal infections already proposed. Here, we demonstrate that some isolates of A. fumigatus display persistence to voriconazole. A subpopulation of the persister isolates can survive for extended periods and even grow at low rates in the presence of supra-MIC of voriconazole and seemingly other azoles. Persistence cannot be eradicated with adjuvant drugs or antifungal combinations and seemed to reduce the efficacy of treatment for certain individuals in a Galleria mellonella model of infection. Furthermore, persistence implies a distinct transcriptional profile, demonstrating that it is an active response. We propose that azole persistence might be a relevant and underestimated factor that could influence the outcome of infection in human aspergillosis. IMPORTANCE The phenomena of antibacterial tolerance and persistence, where pathogenic microbes can survive for extended periods in the presence of cidal drug concentrations, have received significant attention in the last decade. Several mechanisms of action have been elucidated, and their relevance for treatment failure in bacterial infections demonstrated. In contrast, our knowledge of antifungal tolerance and, in particular, persistence is still very limited. In this study, we have characterized the response of the prominent fungal pathogen Aspergillus fumigatus to the first-line therapy antifungal voriconazole. We comprehensively show that some isolates display persistence to this fungicidal antifungal and propose various potential mechanisms of action. In addition, using an alternative model of infection, we provide initial evidence to suggest that persistence may cause treatment failure in some individuals. Therefore, we propose that azole persistence is an important factor to consider and further investigate in A. fumigatus.

3.
J Fungi (Basel) ; 8(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35330318

RESUMO

Most cases of invasive aspergillosis are caused by Aspergillus fumigatus, whose conidia are ubiquitous in the environment. Additionally, in indoor environments, such as houses or hospitals, conidia are frequently detected too. Hospital-acquired aspergillosis is usually associated with airborne fungal contamination of the hospital air, especially after building construction events. A. fumigatus strain typing can fulfill many needs both in clinical settings and otherwise. The high incidence of aspergillosis in COVID patients from our hospital, made us wonder if they were hospital-acquired aspergillosis. The purpose of this study was to evaluate whether the hospital environment was the source of aspergillosis infection in CAPA patients, admitted to the Hospital Universitario Central de Asturias, during the first and second wave of the COVID-19 pandemic, or whether it was community-acquired aspergillosis before admission. During 2020, sixty-nine A. fumigatus strains were collected for this study: 59 were clinical isolates from 28 COVID-19 patients, and 10 strains were environmentally isolated from seven hospital rooms and intensive care units. A diagnosis of pulmonary aspergillosis was based on the ECCM/ISHAM criteria. Strains were genotyped by PCR amplification and sequencing of a panel of four hypervariable tandem repeats within exons of surface protein coding genes (TRESPERG). A total of seven genotypes among the 10 environmental strains and 28 genotypes among the 59 clinical strains were identified. Genotyping revealed that only one environmental A. fumigatus from UCI 5 (box 54) isolated in October (30 October 2020) and one A. fumigatus isolated from a COVID-19 patient admitted in Pneumology (Room 532-B) in November (24 November 2020) had the same genotype, but there was a significant difference in time and location. There was also no relationship in time and location between similar A. fumigatus genotypes of patients. The global A. fumigatus, environmental and clinical isolates, showed a wide diversity of genotypes. To our knowledge, this is the first study monitoring and genotyping A. fumigatus isolates obtained from hospital air and COVID-19 patients, admitted with aspergillosis, during one year. Our work shows that patients do not acquire A. fumigatus in the hospital. This proves that COVID-associated aspergillosis in our hospital is not a nosocomial infection, but supports the hypothesis of "community aspergillosis" acquisition outside the hospital, having the home environment (pandemic period at home) as the main suspected focus of infection.

4.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641518

RESUMO

Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Hidroximetilglutaril-CoA Redutases/genética , Antifúngicos/química , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Azóis/química , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Proteínas Fúngicas/química , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/química , Testes de Sensibilidade Microbiana , Mutação Puntual , Regiões Promotoras Genéticas , Sequenciamento Completo do Genoma
5.
Acta amaz ; Acta amaz;45(1): 45-56, jan.-mar. 2015. map, tab, graf
Artigo em Espanhol | LILACS, VETINDEX | ID: biblio-1455235

RESUMO

El acopio esparcido ha recibido singular atención en las últimas décadas, y muchos estudios se han centrado en semillas de palmeras dispersadas por Dasyprocta. Nuestro objetivo fue identificar las especies consumidoras de frutos de Mauritia flexuosa, evaluar la importancia relativa de esas especies y el destino de las semillas dispersadas. Utilizamos experimentos de campo para evaluar el destino de las semillas removidas por frugívoros, en la Reserva de la Biosfera Pilón Lajas, Bolivia. Predijimos que las semillas enterradas por Dasyprocta tendrían menor mortalidad que las no enterradas. Colocamos 6-16 estaciones de frutos, con 15-50 frutos cada una, en cinco periodos de muestreo cubriendo un año. Los principales dispersores de M. flexuosa fueron D. punctata y Cuniculus paca, que transportan las semillas un máximo de 12.63 m y 14.1 m, respectivamente. Los dispersores removieron 7.5% de los frutos de las estaciones. Todas las semillas dispersadas en cuatro de los muestreos fueron depredadas o se pudrieron; solamente el 0.5% de las semillas dispersadas en febrero germinaron. De las semillas colocadas sobre y debajo del suelo en época seca y húmeda, solamente sobrevivieron aquellas enterradas en la época húmeda; el resto fueron depredadas o se pudrieron. Ninguna de las 84 semillas removidas por D. punctata fue enterrada, lo cual difiere de casi todos los reportes sobre el comportamiento de Dasyprocta. Discutimos este resultado en relación al posible efecto de la humedad del suelo y el tamaño de las semillas, y postulamos que la elevada abundancia del recurso haría innecesario acopiar semillas bajo suelo.


Scatterhoarding has received special attention for the last couple of decades, and several studies focused on palms whose seeds are dispersed by Dasyprocta. Our objective was to know the species that consume fruits of Mauritia flexuosa, to evaluate the relative importance of consumer species, and also to assess the fate of dispersed seeds. Using field experiments we evaluated the fate of seeds removed by frugivores at the Pilón Lajas Biosphere Reserve, Bolivia. We predicted that seeds buried by Dasyprocta would present lower mortality that those left unburied. We placed 6-16 fruit stations, with 15-50 fruits each, in five sampling periods along a year. The main seed dispersers of M. flexuosa were D. punctata and Cuniculus paca, which transported seeds a maximum of 12.63 m, and 14.1, respectively. Dispersers removed 7.5% of the fruits from the stations. All seeds removed during four out of the five sampling periods were either predated, or rotted; only 0.5% of the seeds dispersed in February germinated. From the total of seeds we buried in the dry and wet season only survived those buried in the wet season, the remaining were predated or rotted off. None of the 84 seeds removed by D. punctata were buried, which differs from all known reports on dispersal behavior of Dasyprocta. We discuss these findings in relation to the possible effects of soil humidity, and seed size and advance the hypothesis that the high abundance of the resource makes it unnecessary to scatterhoard seeds underground.


Assuntos
Animais , Arecaceae , Cuniculidae , Dasyproctidae , Dispersão de Sementes , Bolívia
6.
N Engl J Med ; 370(16): 1524-31, 2014 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-24738669

RESUMO

We report the case of a patient from Brazil with a bloodstream infection caused by a strain of methicillin-resistant Staphylococcus aureus (MRSA) that was susceptible to vancomycin (designated BR-VSSA) but that acquired the vanA gene cluster during antibiotic therapy and became resistant to vancomycin (designated BR-VRSA). Both strains belong to the sequence type (ST) 8 community-associated genetic lineage that carries the staphylococcal chromosomal cassette mec (SCCmec) type IVa and the S. aureus protein A gene (spa) type t292 and are phylogenetically related to MRSA lineage USA300. A conjugative plasmid of 55,706 bp (pBRZ01) carrying the vanA cluster was identified and readily transferred to other staphylococci. The pBRZ01 plasmid harbors DNA sequences that are typical of the plasmid-associated replication genes rep24 or rep21 described in community-associated MRSA strains from Australia (pWBG745). The presence and dissemination of community-associated MRSA containing vanA could become a serious public health concern.


Assuntos
Bacteriemia/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Resistência a Vancomicina/genética , Adulto , Brasil , Transferência Genética Horizontal , Genoma Bacteriano , Humanos , Masculino , Testes de Sensibilidade Microbiana , Família Multigênica , Micose Fungoide/complicações , Plasmídeos/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA