Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 122023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37129354

RESUMO

Cellular growth is the result of passive physical constraints and active biological processes. Their interplay leads to the appearance of robust and ubiquitous scaling laws relating linearly cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, their origin is still unclear. Here, we show that these laws can be explained quantitatively by a single model of size regulation based on three simple, yet generic, physical constraints defining altogether the Pump-Leak model. Based on quantitative estimates, we clearly map the Pump-Leak model coarse-grained parameters with the dominant cellular components. We propose that dry mass density homeostasis arises from the scaling between proteins and small osmolytes, mainly amino acids and ions. Our model predicts this scaling to naturally fail, both at senescence when DNA and RNAs are saturated by RNA polymerases and ribosomes, respectively, and at mitotic entry due to the counterion release following histone tail modifications. Based on the same physical laws, we further show that nuclear scaling results from a osmotic balance at the nuclear envelope and a large pool of metabolites, which dilutes chromatin counterions that do not scale during growth.


Assuntos
Modelos Biológicos , Ribossomos , Ciclo Celular , Aminoácidos , Tamanho Celular
2.
Curr Opin Cell Biol ; 70: 100-108, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662810

RESUMO

Although textbook pictures depict the cell nucleus as a simple ovoid object, it is now clear that it adopts a large variety of shapes in tissues. When cells deform, because of cell crowding or migration through dense matrices, the nucleus is subjected to large constraints that alter its shape. In this review, we discuss recent studies related to nuclear fragility, focusing on the surprising finding that the nuclear envelope can form blebs. Contrary to the better-known plasma membrane blebs, nuclear blebs are unstable and almost systematically lead to nuclear envelope opening and uncontrolled nucleocytoplasmic mixing. They expand, burst, and repair repeatedly when the nucleus is strongly deformed. Although blebs are a major source of nuclear instability, they are poorly understood so far, which calls for more in-depth studies of these structures.


Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA