Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894915

RESUMO

Lupus nephritis (LN) is a severe complication of systemic lupus erythematosus (SLE) and is considered one of the leading causes of mortality. Multiple immunological pathways are involved in the pathogenesis of SLE, which makes it imperative to deepen our knowledge about this disease's immune-pathological complexity and explore new therapeutic targets. Since an altered redox state contributes to immune system dysregulation, this document briefly addresses the roles of oxidative stress (OS), oxidative DNA damage, antioxidant enzymes, mitochondrial function, and mitophagy in SLE and LN. Although adaptive immunity's participation in the development of autoimmunity is undeniable, increasing data emphasize the importance of innate immunity elements, particularly the Toll-like receptors (TLRs) that recognize nucleic acid ligands, in inflammatory and autoimmune diseases. Here, we discuss the intriguing roles of TLR7 and TLR9 in developing SLE and LN. Also included are the essential characteristics of conventional treatments and some other novel and little-explored alternatives that offer options to improve renal function in LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Nefrite Lúpica/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor 7 Toll-Like/genética , Imunidade Inata , Oxirredução
2.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768992

RESUMO

End-stage renal disease (ESRD) progression is closely related to oxidative stress (OS). The study objective was to determine the oxidant and antioxidant status in peritoneal dialysis (PD) patients with type 2 diabetes mellitus (DM). An analytical cross-sectional study from the PD program was carried out with 62 patients, 22 with and 40 without DM. Lipoperoxides (LPO) levels in patients with DM, 3.74 ± 1.09 mM/L, and without DM, 3.87 ± 0.84 mM/L were found to increase compared to healthy controls (HC) 3.05 ± 0.58 mM/L (p = 0.006). The levels of the oxidative DNA damage marker (8-OH-dG) were found to be significantly increased in patients with DM, 1.71 ng/mL (0.19-71.92) and without DM, 1.05 ng/mL (0.16-68.80) front to 0.15 ng/mL (0.15-0.1624) of HC (p = 0.001). The antioxidant enzyme superoxide dismutase (SOD) activity was found to be significantly increased in patients with DM, 0.37 ± 0.15 U/mL, and without DM, 0.37 ± 0.17 compared to HC, 0.23 ± 0.05 U/mL (p = 0.038). The activity of the enzyme glutathione peroxidase (GPx) showed a significant increase (p < 0.001) in patients with DM, 3.56 ± 2.18 nmol/min/mL, and without DM, 3.28 ± 1.46 nmol/min/mL, contrary to the activity obtained in HC, 1.55 ± 0.34 nmol/min/mL. In conclusion, we found an imbalance of oxidative status in patients undergoing PD with and without DM through the significant increase in LPO oxidants and the marker of oxidative damage in DNA. The activity of the antioxidant enzymes SOD and GPx were significantly increased in patients with and without DM undergoing PD, possibly in an attempt to compensate for the deregulation of oxidants. Antioxidant enzymes could be promising therapeutic strategies as a complement to the management of chronic kidney diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Diálise Peritoneal , Humanos , Antioxidantes/metabolismo , Estudos Transversais , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Peróxidos Lipídicos , Glutationa Peroxidase/metabolismo , Oxidantes
3.
Antioxidants (Basel) ; 12(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36671026

RESUMO

Obesity and hypertension are health problems of increasing prevalence in developed countries. The link between obesity and hypertension is not yet fully determined. Oxidative stress (OS) and mitochondrial function may play a role in obesity-associated hypertension. A cross-sectional study with 175 subjects with normal weight, overweight, or obese who attended a medical check-up was included. The subjects were divided according to the body mass index (BMI) into normal-weight (n-53), overweight (n-84), and obesity (n-38). Hypertension was also evaluated. To measure mitochondrial function, ATP hydrolysis and ATP synthesis in platelets and serum, respectively, were determined. Superoxide dismutase (SOD), catalase, lipohydroperoxides, 8-isoprostanes, carbonyl groups in proteins, nitric oxide (NO) metabolites, 8-hydroxy-2'-deoxyguanosine (8-OHG), 8-oxoguanine glycosylase (hOGG1), tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were measured by standard colorimetric or immunoassay methods. Obese subjects showed lower ATP hydrolysis activity than normal weight and overweight subjects (p < 0.01). No differences between those groups were found in ATP synthase and catalase activities, lipid hydroperoxides, carbonyl groups in proteins, 8-isoprostanes, and NO metabolites. In the obesity group, SOD activity (p < 0.01) was decreased while 8-OHG (p < 0.01) was increased. Subjects with hypertension showed increased 8-OHG (p < 0.01) and less reparative enzyme (hOGG1 p = 0.04) than subjects with normal weight. Moreover, we found a decrease of SOD (p < 0.01), catalase activities (p = 0.04), NO metabolites (p < 0.01), and increases of carbonyl groups in proteins (p = 0.01), TNF-α (p < 0.01) and IL-6 (p < 0.01 in hypertensive subjects. Obese subjects show a decrease in ATP hydrolysis. The decrease in ATP hydrolysis rate and ATP synthesis and an increase in OS and inflammation markers were associated with the hypertensive state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA