Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Death Dis ; 14(8): 505, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543647

RESUMO

Mycobacterium tuberculosis (Mtb) is known to evade host immune responses and persist in macrophages for long periods. A mechanism that the host uses to combat Mtb is xenophagy, a selective form of autophagy that targets intracellular pathogens for degradation. Ubiquitination of Mtb or Mtb-containing compartments is a key event to recruit the autophagy machinery and mediate the bacterial delivery to the lysosome. This event relies on the coordinated and complementary activity of different ubiquitin ligases, including PARKIN, SMURF1, and TRIM16. Because each of these factors is responsible for the ubiquitination of a subset of the Mtb population, it is likely that additional ubiquitin ligases are employed by macrophages to trigger a full xenophagic response during Mtb infection. In this study, we investigated the role TRIM proteins whose expression is modulated in response to Mtb or BCG infection of primary macrophages. These TRIMs were ectopically expressed in THP1 macrophage cell line to assess their impact on Mtb replication. This screening identified TRIM32 as a novel player involved in the intracellular response to Mtb infection, which promotes autophagy-mediated Mtb degradation. The role of TRIM32 in xenophagy was further confirmed by silencing TRIM32 expression in THP1 cells, which causes increased intracellular growth of Mtb associated to impaired Mtb ubiquitination, reduced recruitment of the autophagy proteins NDP52/CALCOCO2 and BECLIN 1/BECN1 to Mtb and autophagosome formation. Overall, these findings suggest that TRIM32 plays an important role in the host response to Mtb infection through the induction of autophagy, representing a promising target for host-directed tuberculosis therapies.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ubiquitina/metabolismo , Macrófagos/metabolismo , Tuberculose/genética , Autofagia/fisiologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/metabolismo
2.
Autophagy ; 18(8): 1752-1762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34798798

RESUMO

PINK1 accumulation at the outer mitochondrial membrane (OMM) is a key event required to signal depolarized mitochondria to the autophagy machinery. How this early step is, in turn, modulated by autophagy proteins remains less characterized. Here, we show that, upon mitochondrial depolarization, the proautophagic protein AMBRA1 is recruited to the OMM and interacts with PINK1 and ATAD3A, a transmembrane protein that mediates mitochondrial import and degradation of PINK1. Downregulation of AMBRA1 expression results in reduced levels of PINK1 due to its enhanced degradation by the mitochondrial protease LONP1, which leads to a decrease in PINK1-mediated ubiquitin phosphorylation and mitochondrial PRKN/PARKIN recruitment. Notably, ATAD3A silencing rescues defective PINK1 accumulation in AMBRA1-deficient cells upon mitochondrial damage. Overall, our findings underline an upstream contribution of AMBRA1 in the control of PINK1-PRKN mitophagy by interacting with ATAD3A and promoting PINK1 stability. This novel regulatory element may account for changes of PINK1 levels in neuropathological conditions.Abbreviations: ACTB/ß-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATAD3A: ATPase family AAA domain containing 3A; BCL2L1/BCL-xL: BCL2 like 1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OMA1: OMA1 zinc metallopeptidase; OMM: outer mitochondrial membrane; PARL: presenilin associated rhomboid like; PARP: poly(ADP-ribose) polymerase; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; SDHA: succinate dehydrogenase complex flavoprotein subunit A; TOMM70: translocase of outer mitochondrial membrane 70.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Mitofagia , Proteínas Quinases , Autofagia , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Front Immunol ; 12: 594376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981297

RESUMO

Tuberculosis (TB), due to Mycobacterium tuberculosis infection, is still the principal cause of death caused by a single infectious agent. The balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. Factors defining this variety are unclear and likely involve both mycobacterial and immunological components. Myeloid derived suppressor cells (MDSC) have been shown to be expanded during TB, but their role in human TB pathogenesis is not clear. We evaluated the frequency of circulating MDSC by flow-cytometry in 19 patients with active TB, 18 with latent TB infection (LTBI), and 12 healthy donors (HD) as control. Moreover, we investigated the capacity of MDSC to modulate the mycobactericidal activity of monocytes. The association between MDSC level and TB chest X-ray severity score was analyzed. We observed that, unlike active TB, polymorphonuclear (PMN)-MDSC are not expanded in LTBI patients, and, by performing a receiver operating characteristic (ROC) curve analysis, we found that PMN-MDSC frequency supported the discrimination between active disease and LTBI. Interestingly, we observed an association between PMN-MDSC levels and the severity of TB disease evaluated by chest X-ray. Specifically, PMN-MDSC frequency was higher in those classified with a low/mild severity score compared to those classified with a high severity score. Moreover, PMN-MDSC can impact mycobacterial growth by inducing ROS production in Bacillus Calmette et Guerin (BCG)-infected monocytes. This effect was lost when tested with M. tuberculosis (MTB), In conclusion, our data indicate that the elevated frequency of PMN-MDSC in IGRA-positive individuals is associated with active TB. Our findings also pointed out a beneficial role of PMN-MDSC during human active TB, most likely associated with the limitation of inflammation-induced tissue damage.


Assuntos
Tuberculose Latente , Contagem de Leucócitos , Mycobacterium tuberculosis/imunologia , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto , Biomarcadores , Diagnóstico Diferencial , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Células Supressoras Mieloides/metabolismo , Neutrófilos/metabolismo , Curva ROC , Índice de Gravidade de Doença , Tuberculose/diagnóstico , Adulto Jovem
4.
Antiviral Res ; 190: 105064, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781803

RESUMO

COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , RNA Helicases DEAD-box/metabolismo , Animais , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , DNA Helicases , Fator de Iniciação 2 em Eucariotos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteômica/métodos , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/fisiologia
5.
Cell Death Differ ; 27(3): 887-902, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31969691

RESUMO

Autophagy, a main intracellular catabolic process, is induced in response to a variety of cellular stresses to promptly degrade harmful agents and to coordinate the activity of prosurvival and prodeath processes in order to determine the fate of the injured cells. While the main components of the autophagy machinery are well characterized, the molecular mechanisms that confer selectivity to this process both in terms of stress detection and cargo engulfment have only been partly elucidated. Here, we discuss the emerging role played by the E3 ubiquitin ligases of the TRIM family in regulating autophagy in physiological and pathological conditions, such as inflammation, infection, tumorigenesis, and muscle atrophy. TRIM proteins employ different strategies to regulate the activity of the core autophagy machinery, acting either as scaffold proteins or via ubiquitin-mediated mechanisms. Moreover, they confer high selectivity to the autophagy-mediated degradation as described for the innate immune response, where TRIM proteins mediate both the engulfment of pathogens within autophagosomes and modulate the immune response by controlling the stability of signaling regulators. Importantly, the elucidation of the molecular mechanisms underlying the regulation of autophagy by TRIMs is providing important insights into how selective types of autophagy are altered under pathological conditions, as recently shown in cancer and muscular dystrophy.


Assuntos
Autofagia , Células/patologia , Imunidade Inata , Proteínas com Motivo Tripartido/metabolismo , Animais , Humanos , Modelos Biológicos , Transdução de Sinais
6.
Front Immunol ; 10: 3042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038614

RESUMO

Host-directed therapies (HDTs) are emerging as a potential valid support in the treatment of drug-resistant tuberculosis (TB). Following our recent report indicating that genetic and pharmacological inhibition of transglutaminase 2 (TG2) restricts Mycobacterium tuberculosis (Mtb) replication in macrophages, we aimed to investigate the potentials of the TG2 inhibitors cystamine and cysteamine as HDTs against TB. We showed that both cysteamine and cystamine restricted Mtb replication in infected macrophages when provided at equimolar concentrations and did not exert any antibacterial activity when administered directly on Mtb cultures. Interestingly, infection of differentiated THP-1 mRFP-GFP-LC3B cells followed by the determination of the autophagic intermediates pH distribution (AIPD) showed that cystamine inhibited the autophagic flux while restricting Mtb replication. Moreover, both cystamine and cysteamine had a similar antimicrobial activity in primary macrophages infected with a panel of Mtb clinical strains belonging to different phylogeographic lineages. Evaluation of cysteamine and cystamine activity in the human ex vivo model of granuloma-like structures (GLS) further confirmed the ability of these drugs to restrict Mtb replication and to reduce the size of GLS. The antimicrobial activity of the TG2 inhibitors synergized with a second-line anti-TB drug as amikacin in human monocyte-derived macrophages and in the GLS model. Overall, the results of this study support the potential usefulness of the TG2-inhibitors cysteamine and cystamine as HDTs against TB.


Assuntos
Cistamina/uso terapêutico , Cisteamina/uso terapêutico , Proteínas de Ligação ao GTP/metabolismo , Granuloma/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Transglutaminases/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Amicacina/uso terapêutico , Antibacterianos/uso terapêutico , Antituberculosos/uso terapêutico , Autofagia/efeitos dos fármacos , Replicação do DNA , Sinergismo Farmacológico , Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Proteína 2 Glutamina gama-Glutamiltransferase , Células THP-1 , Transglutaminases/antagonistas & inibidores
7.
Future Med Chem ; 10(14): 1677-1691, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957070

RESUMO

AIM: Confirm the use of Plectanthus spp. plants in traditional medicine, particularly as anti-inflammatory and anti-infective agents. MATERIALS & METHODS: Compounds previously isolated from Plectranthus spp. were studied for their anti-inflammatory activity using the SNAP assay and RAW 264.7 cells, by the quantification of nitric oxide. An halimane diterpene and its derivatives were tested in infected macrophages with M. tuberculosis H37Rv, using CFU counts assay, at their minimum inhibitory concentration values. Results: The isolated compounds tested at noncytotoxic concentrations, did not reveal nitric oxide scavenging in the S-nitroso-N-acetylpenicillamine and the cellular assays. On the other hand, promising results were obtained regarding one semisynthetic halimane derivative (11R*,13E)-halima-5,13-diene-11,15-diol), previously prepared (2.1 × 105 CFU/mL), with an effect similar to the antitubercular drugs ethambutol (2.0 × 105 CFU/mL) and isoniazid (1.2 × 105 CFU/mL). CONCLUSION: The present report demonstrates the relevance of Plectranthus spp. in medicinal chemistry drug development for TB and other infective respiratory complaints. Also, this work suggests that further studies involving other inflammatory mediators are needed to validate the anti-inflammatory use of these medicinal plants.


Assuntos
Anti-Inflamatórios/química , Antituberculosos/química , Produtos Biológicos/química , Plectranthus/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Plectranthus/metabolismo , Células RAW 264.7
8.
Cell Death Dis ; 9(6): 624, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29795378

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected over 1.7 billion people worldwide and causes 1.4 million deaths annually. Recently, genome sequence analysis has allowed the reconstruction of Mycobacterium tuberculosis complex (MTBC) evolution, with the identification of seven phylogeographic lineages: four referred to as evolutionarily "ancient", and three "modern". The MTBC strains belonging to "modern" lineages appear to show enhanced virulence that may have warranted improved transmission in humans over ancient lineages through molecular mechanisms that remain to be fully characterized. To evaluate the impact of MTBC genetic diversity on the innate immune response, we analyzed intracellular bacterial replication, inflammatory cytokine levels, and autophagy response in human primary macrophages infected with MTBC clinical isolates belonging to the ancient lineages 1 and 5, and the modern lineage 4. We show that, when compared to ancient lineage 1 and 5, MTBC strains belonging to modern lineage 4 show a higher rate of replication, associated to a significant production of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) and induction of a functional autophagy process. Interestingly, we found that the increased autophagic flux observed in macrophages infected with modern MTBC is due to an autocrine activity of the proinflammatory cytokine IL-1ß, since autophagosome maturation is blocked by an interleukin-1 receptor antagonist. Unexpectedly, IL-1ß-induced autophagy is not disadvantageous for the survival of modern Mtb strains, which reside within Rab5-positive phagosomal vesicles and avoid autophagosome engulfment. Altogether, these results suggest that autophagy triggered by inflammatory cytokines is compatible with a high rate of intracellular bacilli replication and may therefore contribute to the increased pathogenicity of the modern MTBC lineages.


Assuntos
Autofagia , Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Autofagossomos/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/ultraestrutura , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Transdução de Sinais
9.
PLoS Pathog ; 14(1): e1006790, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300789

RESUMO

Autophagy is a primordial eukaryotic pathway, which provides the immune system with multiple mechanisms for the elimination of invading pathogens including Mycobacterium tuberculosis (Mtb). As a consequence, Mtb has evolved different strategies to hijack the autophagy process. Given the crucial role of human primary dendritic cells (DC) in host immunity control, we characterized Mtb-DC interplay by studying the contribution of cellular microRNAs (miRNAs) in the post-transcriptional regulation of autophagy related genes. From the expression profile of de-regulated miRNAs obtained in Mtb-infected human DC, we identified 7 miRNAs whose expression was previously found to be altered in specimens of TB patients. Among them, gene ontology analysis showed that miR-155, miR-155* and miR-146a target mRNAs with a significant enrichment in biological processes linked to autophagy. Interestingly, miR-155 was significantly stimulated by live and virulent Mtb and enriched in polysome-associated RNA fraction, where actively translated mRNAs reside. The putative pair interaction among the E2 conjugating enzyme involved in LC3-lipidation and autophagosome formation-ATG3-and miR-155 arose by target prediction analysis, was confirmed by both luciferase reporter assay and Atg3 immunoblotting analysis of miR-155-transfected DC, which showed also a consistent Atg3 protein and LC3 lipidated form reduction. Late in infection, when miR-155 expression peaked, both the level of Atg3 and the number of LC3 puncta per cell (autophagosomes) decreased dramatically. In accordance, miR-155 silencing rescued autophagosome number in Mtb infected DC and enhanced autolysosome fusion, thereby supporting a previously unidentified role of the miR-155 as inhibitor of ATG3 expression. Taken together, our findings suggest how Mtb can manipulate cellular miRNA expression to regulate Atg3 for its own survival, and highlight the importance to develop novel therapeutic strategies against tuberculosis that would boost autophagy.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Células Dendríticas/metabolismo , MicroRNAs/genética , Mycobacterium tuberculosis/fisiologia , Enzimas de Conjugação de Ubiquitina/genética , Autofagossomos/imunologia , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Células Cultivadas , Células Dendríticas/microbiologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , MicroRNAs/fisiologia , Mycobacterium tuberculosis/imunologia , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores
10.
Oncotarget ; 8(61): 102852-102867, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262528

RESUMO

The ERCC8/CSA gene encodes a WD-40 repeat protein (CSA) that is part of a E3-ubiquitin ligase/COP9 signalosome complex. When mutated, CSA causes the Cockayne Syndrome group A (CS-A), a rare recessive progeroid disorder characterized by sun sensitivity and neurodevelopmental abnormalities. CS-A cells features include ROS hyperproduction, accumulation of oxidative genome damage, mitochondrial dysfunction and increased apoptosis that may contribute to the neurodegenerative process. In this study, we show that CSA localizes to mitochondria and specifically interacts with the mitochondrial fission protein dynamin-related protein (DRP1) that is hyperactivated when CSA is defective. Increased fission is not counterbalanced by increased mitophagy in CS-A cells thus leading to accumulation of fragmented mitochondria. However, when mitochondria are challenged with the mitochondrial toxin carbonyl cyanide m-chloro phenyl hydrazine, CS-A fibroblasts undergo mitophagy as efficiently as normal fibroblasts, suggesting that this process remains targetable to get rid of damaged mitochondria. Indeed, when basal mitophagy was potentiated by overexpressing Parkin in CSA deficient cells, a significant rescue of the dysfunctional mitochondrial phenotype was observed. Importantly, Parkin overexpression not only reactivates basal mitophagy, but plays also an anti-apoptotic role by significantly reducing the translocation of Bax at mitochondria in CS-A cells. These findings provide new mechanistic insights into the role of CSA in mitochondrial maintenance and might open new perspectives for therapeutic approaches.

11.
Autophagy ; 13(4): 654-669, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368777

RESUMO

Mitophagy is a highly specialized process to remove dysfunctional or superfluous mitochondria through the macroautophagy/autophagy pathway, aimed at protecting cells from the damage of disordered mitochondrial metabolism and apoptosis induction. PINK1, a neuroprotective protein mutated in autosomal recessive Parkinson disease, has been implicated in the activation of mitophagy by selectively accumulating on depolarized mitochondria, and promoting PARK2/Parkin translocation to them. While these steps have been characterized in depth, less is known about the process and site of autophagosome formation upon mitophagic stimuli. A previous study reported that, in starvation-induced autophagy, the proautophagic protein BECN1/Beclin1 (which we previously showed to interact with PINK1) relocalizes at specific regions of contact between the endoplasmic reticulum (ER) and mitochondria called mitochondria-associated membranes (MAM), from which the autophagosome originates. Here we show that, following mitophagic stimuli, autophagosomes also form at MAM; moreover, endogenous PINK1 and BECN1 were both found to relocalize at MAM, where they promoted the enhancement of ER-mitochondria contact sites and the formation of omegasomes, that represent autophagosome precursors. PARK2 was also enhanced at MAM following mitophagy induction. However, PINK1 silencing impaired BECN1 enrichment at MAM independently of PARK2, suggesting a novel role for PINK1 in regulating mitophagy. MAM have been recently implicated in many key cellular events. In this light, the observed prevalent localization of PINK1 at MAM may well explain other neuroprotective activities of this protein, such as modulation of mitochondrial calcium levels, mitochondrial dynamics, and apoptosis.


Assuntos
Autofagossomos/metabolismo , Proteína Beclina-1/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Compartimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Humanos
12.
Biomed Res Int ; 2014: 265353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162004

RESUMO

Hepatitis C virus (HCV) infection is one of the main causes of chronic liver disease. Viral persistence and pathogenesis rely mainly on the ability of HCV to deregulate specific host processes, including lipid metabolism and innate immunity. Recently, autophagy has emerged as a cellular pathway, playing a role in several aspects of HCV infection. This review summarizes current knowledge on the molecular mechanisms that link the HCV life cycle with autophagy machinery. In particular, we discuss the role of HCV/autophagy interaction in dysregulating inflammation and lipid homeostasis and its potential for translational applications in the treatment of HCV-infected patients.


Assuntos
Autofagia/genética , Hepatite C/metabolismo , Hepatite C/virologia , Inflamação/genética , Hepacivirus/metabolismo , Hepacivirus/patogenicidade , Hepatite C/patologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/genética , Inflamação/patologia , Inflamação/virologia , Transdução de Sinais , Replicação Viral/genética
13.
Cytokine Growth Factor Rev ; 24(4): 335-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23395260

RESUMO

Tuberculosis is a global health calamity. The causative agent, Mycobacterium tuberculosis (M. tuberculosis), has evolved elaborate survival mechanisms in humans, allowing it to remain in a clinically latent infection state, constantly engaging the immune system, with the possibility to progress to active disease. Autophagy is a cellular process responsible for the degradation of intracellular components, including invading pathogens, playing an important role in both innate and adaptive immunity. In this review, we describe the molecular mechanisms employed by M. tuberculosis to avoid autophagic degradation and exploit this process to its own advantage. Moreover, we discuss the multiple roles played by autophagy in the immune responses to M. tuberculosis, and its unforeseen contribution to the antibacterial activity of tuberculosis-specific drugs.


Assuntos
Autofagia/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Antituberculosos/uso terapêutico , Citocinas/metabolismo , Humanos , Evasão da Resposta Imune , Inflamação/imunologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico
14.
Eur J Immunol ; 43(1): 147-58, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22996354

RESUMO

Plasmacytoid DCs (pDCs) are crucial mediators in the establishment of immunity against most viruses, given their extraordinary capacity to produce a massive quantity of type I IFN. In this study we investigate the response of pDCs to infection with EBV, a γ-herpes virus that persists with an asymptomatic infection in immunocompetent hosts, although in certain conditions it can promote development of cancers or autoimmune diseases. We show that high amounts of type I IFNs were released from isolated pDCs after exposure to EBV by a mechanism requiring TLRs and a functional autophagic machinery. We next demonstrate that EBV can infect pDCs via viral binding to MHC class II molecule HLA-DR and that pDCs express EBV-induced latency genes. Furthermore, we observe that EBV is able to induce activation but not maturation of pDCs, which correlates with an impaired TNF-α release. Accordingly, EBV-infected pDCs are unable to mount a full T-cell response, suggesting that impaired pDC maturation, combined with a concomitant EBV-mediated upregulation of the T-cell inhibitory molecules B7-H1 and ICOS-L, could represent an immune-evasion strategy promoted by the virus. These mechanisms might lead to persistence in immunocompetent hosts or to dysregulated immune responses linked to EBV-associated diseases.


Assuntos
Células Dendríticas/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Linfócitos T/imunologia , Receptor Toll-Like 9/imunologia , Autofagia/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Células Cultivadas , Células Dendríticas/virologia , Antígenos HLA-DR/metabolismo , Herpesvirus Humano 4/patogenicidade , Humanos , Evasão da Resposta Imune , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Ativação Linfocitária , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Internalização do Vírus , Latência Viral/genética , Replicação Viral
15.
Autophagy ; 8(9): 1357-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22885411

RESUMO

Emerging evidence points to an important role of autophagy in the immune response mediated by dendritic cells (DC) against Mycobacterium tuberculosis (Mtb). Since current vaccination based on Bacillus Calmette-Guerin (BCG) is unable to stop the tuberculosis epidemic, a deeper comprehension of the alterations induced by Mtb in DC is essential for setting new vaccine strategies. Here, we compared the capacity of virulent (H37Rv) and avirulent (H37Ra) Mtb strains as well as BCG to modulate autophagy in human primary DC. We found that Mtb H37Rv impairs autophagy at the step of autophagosome-lysosome fusion. In contrast, neither Mtb H37Ra nor BCG strains were able to hamper autophagosome maturation. Both these attenuated strains have a functional inhibition of the 6kD early secreted antigenic target ESAT-6, an effector protein of the ESAT-6 Secretion System-1(ESX-1)/type VII secretion system. Notably, the ability to inhibit autophagy was fully restored in recombinant BCG and Mtb H37Ra strains in which ESAT-6 secretion was re-established by genetic complementation using either the ESX-1 region from Mtb (BCG::ESX-1) or the PhoP gene (Mtb H37Ra::PhoP), a regulator of ESAT-6 secretion. Importantly, the autophagic block induced by Mtb was overcome by rapamycin treatment leading to an increased interleukin-12 expression and, in turn, to an enhanced capacity to expand a Th1-oriented response. Collectively, our study demonstrated that Mtb alters the autophagic machinery through the ESX-1 system, and thereby opens new exciting perspectives to better understand the relationship between Mtb virulence and its ability to escape the DC-mediated immune response.


Assuntos
Autofagia , Sistemas de Secreção Bacterianos , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Mycobacterium tuberculosis/fisiologia , Autofagia/efeitos dos fármacos , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/ultraestrutura , Humanos , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/ultraestrutura , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Sirolimo/farmacologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/patologia
16.
J Infect Dis ; 205(9): 1425-35, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22457295

RESUMO

BACKGROUND: Autophagy inhibits survival of intracellular Mycobacterium tuberculosis when induced by rapamycin or interferon γ (IFN-γ), but it remains unclear whether M. tuberculosis itself can induce autophagy and whether T cells play a role in M. tuberculosis-mediated autophagy. The aim of this study was to evaluate the impact of M. tuberculosis on autophagy in human primary macrophages and the role of specific T cells in this process. METHODS: M. tuberculosis (H37Rv)-infected macrophages were incubated with naive or M. tuberculosis-specific T cells. Autophagy was evaluated at 4 hours and 8 hours after infection by analyzing the levels of LC3-II (a hallmark of autophagy) and p62 (a protein degraded by autophagy). M. tuberculosis survival was evaluated by counting the colony-forming units. RESULTS: M. tuberculosis infection of macrophages inhibited the autophagic process at 8 hours after infection. Naive T cells could not rescue this block, whereas M. tuberculosis-specific T cells restored autophagy degradation, accompanied by enhanced bacterial killing. Notably, the effect of M. tuberculosis-specific T cells was not affected by neutralization of endogenous IFN-γ and tumor necrosis factor α and was blocked by preventing contact between macrophages and T cells, suggesting that cell-cell interaction is crucial. CONCLUSIONS: M. tuberculosis inhibits autophagy in human primary macrophages, and specific T cells can restore functional autophagic flux through cell-cell contact.


Assuntos
Autofagia/imunologia , Macrófagos/microbiologia , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Comunicação Celular , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/metabolismo , Macrófagos/imunologia , Microscopia Confocal , Mycobacterium tuberculosis/patogenicidade , Fagossomos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteína Sequestossoma-1 , Células-Tronco/metabolismo , Linfócitos T/metabolismo , Tuberculose/metabolismo , Tuberculose/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
17.
Autophagy ; 8(1): 6-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22170155

RESUMO

Beclin1(Atg6) is a well-known key regulator of autophagy. Although Beclin1 is enzymatically inert, it governs the autophagic process by regulating PtdIns3KC3-dependent generation of phosphatidylinositol3-phosphate (PtdIns(3)P) and the subsequent recruitment of additional Atg proteins that orchestrate autophagosome formation. Furthermore, Beclin1 is implicated in numerous biological processes, including adaptation to stress, development, endocytosis, cytokinesis, immunity, tumorigenesis, ageing and cell death. Whether all of these processes involve only the autophagy-inducing function of Beclin1 is now being seriously questioned, because Beclin1 appears to exercise several non-autophagy functions. Therefore, we should broaden our view of Beclin1 as a specialized molecule in autophagy to that of a multifunctional protein. The central role of Beclin1 in multiple signaling events obviously requires tight regulation at multiple levels. Its function is kept in check by diverse mechanisms, such as epigenetic silencing, microRNA regulation, post-translational modifications, and protein-protein interactions. Interestingly, multiple diseases are associated with deficiency or malfunction of Beclin1, which makes it a potentially valuable target for various therapies, including anti-cancer treatment. In this review, we focus on Beclin1 as a multifunctional protein, discuss the variety of mechanisms by which it is controlled, and give an overview of Beclin1-associated pathologies.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1 , Humanos , Modelos Biológicos , Complexos Multiproteicos/metabolismo
18.
Gastroenterology ; 142(3): 644-653.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155365

RESUMO

BACKGROUND & AIMS: Autophagy is a lysosome-mediated catabolic process that mediates degradation and recycling of all major components of eukaryotic cells. Different stresses, including viral and bacterial infection, induce autophagy, which can promote cell survival by removing the stress inducer or by attenuating its dangerous effects. High levels of autophagy occur during infection of cells with hepatitis C virus (HCV), but the clinical relevance of this process is not clear. METHODS: Levels of autophagy were analyzed in liver biopsy samples from 22 patients with HCV infection using microtubule-associated protein-1 light chain 3 immunoblotting; associations with histological and metabolic parameters were evaluated by Pearson correlation analysis. We investigated the role of HCV-induced autophagy in lipid degradation in cells infected with the virus or replicons, and analyzed autophagosome contents by confocal microscopy and by measuring lipid levels after inhibition of autophagy by Beclin 1 knockdown or lysosome inhibitors. RESULTS: In liver biopsy samples from patients with HCV, there was an inverse correlation between microvesicular steatosis and level of autophagy (r = -0.617; P = .002). HCV selectively induced autophagy of lipids in virus-infected and replicon cells. In each system, autophagosomes frequently colocalized with lipid deposits, mainly formed by unesterified cholesterol. Inhibition of the autophagic process in these cells significantly increased the induction of cholesterol accumulation by HCV. CONCLUSIONS: Autophagy counteracts the alterations in lipid metabolism induced by HCV. Disruption of the autophagic process might contribute to development of steatosis in patients with HCV.


Assuntos
Autofagia , Colesterol/metabolismo , Fígado Gorduroso/prevenção & controle , Hepacivirus/patogenicidade , Hepatite C/complicações , Fígado/virologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Biópsia , Western Blotting , Linhagem Celular Tumoral , Colesterol/genética , Citoproteção , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/virologia , Hepatite C/diagnóstico , Hepatite C/metabolismo , Hepatite C/patologia , Humanos , Itália , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Replicon , Estudos Retrospectivos
19.
J Cell Biol ; 191(1): 155-68, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20921139

RESUMO

Autophagy is an evolutionary conserved catabolic process involved in several physiological and pathological processes such as cancer and neurodegeneration. Autophagy initiation signaling requires both the ULK1 kinase and the BECLIN 1-VPS34 core complex to generate autophagosomes, double-membraned vesicles that transfer cellular contents to lysosomes. In this study, we show that the BECLIN 1-VPS34 complex is tethered to the cytoskeleton through an interaction between the BECLIN 1-interacting protein AMBRA1 and dynein light chains 1/2. When autophagy is induced, ULK1 phosphorylates AMBRA1, releasing the autophagy core complex from dynein. Its subsequent relocalization to the endoplasmic reticulum enables autophagosome nucleation. Therefore, AMBRA1 constitutes a direct regulatory link between ULK1 and BECLIN 1-VPS34, which is required for core complex positioning and activity within the cell. Moreover, our results demonstrate that in addition to a function for microtubules in mediating autophagosome transport, there is a strict and regulatory relationship between cytoskeleton dynamics and autophagosome formation.


Assuntos
Autofagia/fisiologia , Proteínas de Transporte/fisiologia , Dineínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteína Beclina-1 , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Células Cultivadas , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo
20.
Autophagy ; 3(5): 506-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17622796

RESUMO

We recently showed that Ambra 1, a WD40-containing approximately 130 KDa protein, is a novel activating molecule in Beclin 1-regulated autophagy and plays a role in the development of the nervous system. Ambra 1 binds to Beclin 1 and favors Beclin 1/Vps34 interaction. At variance with these factors, Ambra 1 is highly conserved among vertebrates only, and its expression is mostly confined to the neuroepithelium during early neurogenesis. Ambra 1 functional inactivation in mouse led to lethality in utero (starting from embryonic day 14.5), characterized by severe neural tube defects associated with autophagy impairment, unbalanced cell proliferation, accumulation of ubiquitinated proteins, and excessive apoptosis. We also demonstrated that hyperproliferation was the earliest detectable abnormality in the developing neuroepithelium, followed by a wave of caspase-dependent cell death. These findings provided in vivo evidence supporting the existence of a complex interplay between autophagy, cell proliferation and cell death during neural development in mammals. In this article, we review our findings in the contexts of autophagy and neurodevelopment and consider some of the issues raised.


Assuntos
Autofagia/fisiologia , Sistema Nervoso/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Autofagia/genética , Proteína Beclina-1 , Feminino , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mutação , Fenótipo , Fosfatidilinositol 3-Quinases/fisiologia , Gravidez , Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA