Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995500

RESUMO

Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade that was originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at the genomic level among six strains (4 isolated from clam and 2 from seawater) and to determine their phylogeny. For this purpose, whole genomes of the six strains were sequenced by different technologies including Illumina and PacBio, and the resulting sequences were corrected. Genomes were annotated and compared using different online tools. Furthermore, the study of core- and pan-genomes were examined, and the phylogeny was inferred. The content of the core genome ranged from 2953 to 2766 genes and that of the pangenome ranged from 6278 to 6132, depending on the tool used. Although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI values higher than 97%, some differences were found related to motility, capsule synthesis, iron acquisition systems or mobile genetic elements. Phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle (commensal or free-living), but that of the pangenome indicated certain geographical isolation in the same growing area. This study led to the reclassification of some isolates formerly described as V. toranzoniae and demonstrated the importance of cured deposited sequences to proper phylogenetic assignment.

2.
Res Sq ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38826277

RESUMO

Vibrio toranzoniae is a marine bacterium belonging to the Splendidus clade, originally isolated from healthy clams in Galicia (NW Spain). Its isolation from different hosts and seawater indicated two lifestyles and wide geographical distribution. The aim of the present study was to determine the differences at genome level among strains, as well as to determine their phylogeny. For this purpose, whole genomes were sequenced by different technologies and the resulting sequences corrected. Genomes were annotated and compared with different online tools. Furthermore, the study of core and pan genome was examined, and the phylogeny was inferred. The content of the core genome ranged from 2,953 to 2,766 genes and that of the pangenome from 6,278 to 6,132, depending on the tool used. The comparison revealed that although the strains shared certain homology, with DDH values ranging from 77.10 to 82.30 and values of OrthoANI higher than 97%,notable differences were found related to motility, capsule synthesis, iron acquisition system or mobile genetic elements. The phylogenetic analysis of the core genome did not reveal a differentiation of the strains according to their lifestyle, but that of the pangenome pointed out certain geographical isolation in the same growing area. The study led to a reclassification of some isolates formerly described as V. toranzoniae and manifested the importance of cured deposited sequences to proper phylogenetic assignment.

3.
Antibiotics (Basel) ; 13(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38391581

RESUMO

Urinary tract infections (UTIs) caused by resistant Klebsiella pneumoniae can lead to severe clinical complications and even death. An alternative treatment option for infected patients is using bacteriophages. In the present study, we isolated phage VB_KPM_KP1LMA (KP1LMA) from sewage water using a K. pneumoniae strain as a host. Whole-genome analysis indicated that the genome was a double-stranded linear 176,096-bp long DNA molecule with 41.8% GC content and did not contain virulence or antibiotic resistance genes. The inactivation potential of phage KP1LMA was assessed in broth at an MOI of 1 and 10, and a maximum inactivation of 4.9 and 5.4 log CFU/mL, respectively, was observed after 9 h. The efficacy at an MOI of 10 was also assessed in urine to evaluate the phage's performance in an acidic environment. A maximum inactivation of 3.8 log CFU/mL was observed after 9 h. The results suggest that phage KP1LMA could potentially control a UTI caused by this strain of K. pneumoniae, indicating that the same procedure can be used to control UTIs caused by other strains if new specific phages are isolated. Although phage KP1LMA has a narrow host range, in the future, efforts can be made to expand its spectrum of activity and also to combine this phage with others, potentially enabling its use against other K. pneumoniae strains involved in UTIs.

4.
J Water Health ; 22(1): 64-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38295073

RESUMO

Prisons are high-risk settings for infectious disease transmission, due to their enclosed and semi-enclosed environments. The proximity between prisoners and staff, and the diversity of prisons reduces the effectiveness of non-pharmaceutical interventions, such as social distancing. Therefore, alternative health monitoring methods, such as wastewater-based epidemiology (WBE), are needed to track pathogens, including SARS-CoV-2. This pilot study assessed WBE to quantify SARS-CoV-2 prevalence in prison wastewater to determine its utility within a health protection system for residents. The study analysed 266 samples from six prisons in England over a 12-week period for nucleoprotein 1 (N1 gene) and envelope protein (E gene) using quantitative reverse transcriptase-polymerase chain reaction. Both gene assays successfully detected SARS-CoV-2 fragments in wastewater samples, with both genes significantly correlating with COVID-19 case numbers across the prisons (p < 0.01). However, in 25% of the SARS-positive samples, only one gene target was detected, suggesting that both genes be used to reduce false-negative results. No significant differences were observed between 14- and 2-h composite samples, although 2-h samples showed greater signal variance. Population normalisation did not improve correlations between the N1 and E genes and COVID-19 case data. Overall, WBE shows considerable promise for health protection in prison settings.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Prisões , Águas Residuárias , COVID-19/epidemiologia , Projetos Piloto , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA