RESUMO
Avoidance of apoptosis is critical for the development and sustained growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 family of proteins which is overexpressed in many cancers. Upregulation of Mcl-1 in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Therefore, pharmacological inhibition of Mcl-1 is regarded as an attractive approach to treating relapsed or refractory malignancies. Herein, we disclose the design, synthesis, optimization, and early preclinical evaluation of a potent and selective small-molecule inhibitor of Mcl-1. Our exploratory design tactics focused on structural modifications which improve the potency and physicochemical properties of the inhibitor while minimizing the risk of functional cardiotoxicity. Despite being in the "non-Lipinski" beyond-Rule-of-Five property space, the developed compound benefits from exquisite oral bioavailability in vivo and induces potent pharmacodynamic inhibition of Mcl-1 in a mouse xenograft model.
Assuntos
Antineoplásicos , Neoplasias Hematológicas , Humanos , Camundongos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Apoptose , Neoplasias Hematológicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Nitriles are recurring motifs in bioactive molecules and versatile functional groups in synthetic chemistry. Despite recent progress, direct introduction of a nitrile moiety in heteroarenes remains challenging. Recent developments in electrochemical reactions pave the way to more practical cyanation protocols. However, currently available methods typically require hazardous cyanide sources, expensive mediators, and often suffer from narrow substrate scope and laborious reaction set-up. To address the limitations of current synthetic methods, herein, an effective, sustainable, and scalable procedure for the direct C(sp2 )-H cyanation of aromatic N-heterocycles with a user-friendly flow-electrochemical set-up is reported. Furthermore, high substrate and functional-group tolerance is demonstrated, allowing late-stage functionalization of drug-like scaffolds, such as natural products and pharmaceuticals.
Assuntos
Produtos Biológicos , Nitrilas , CianetosRESUMO
This paper describes an intermolecular cross-selective [2 + 2] photocycloaddition reaction of exocyclic arylidene oxetanes, azetidines, and cyclobutanes with simple electron-deficient alkenes. The reaction takes place under mild conditions using a commercially available Ir(III) photosensitizer upon blue light irradiation. This transformation provides access to a range of polysubstituted 2-oxaspiro[3.3]heptane, 2-azaspiro[3.3]heptane, and spiro[3.3]heptane motifs, which are of prime interest in medicinal chemistry as gem-dimethyl and carbonyl bioisosteres. A variety of further transformations of the initial cycloadducts are demonstrated to highlight the versatility of the products and enable selective access to either of a syn- or an anti-diastereoisomer through kinetic or thermodynamic epimerization, respectively. Mechanistic experiments and DFT calculations suggest that this reaction proceeds through a sensitized energy transfer pathway.
RESUMO
A large proportion of medicinally relevant molecules bear nitrogen and sp3-hybridized carbon functionalities. Overwhelmingly, these atoms are found as part of (hetero)cyclic structures. Despite their importance, synthetic approaches to saturated nitrogen heterocycles are limited to several established stoichiometric alkylation techniques, as well as a few methods involving C-H bond activation. The synthetic community remains interested in more general, mild, and sustainable ways to access these motifs. Here we describe a dual-catalyst system composed of an iridium photocatalyst and a lithium phosphate base that is capable of selectively homolyzing the N-H bond of 4-alkyl-1,4-dihydropyridines, presumably by proton-coupled-electron-transfer (PCET), and mediating efficient cyclization of the resultant carbon-centered radicals with tethered imines. The outcome of this transformation is access to a broad range of structurally complex nitrogen heterocycles obtainable from simple aldehyde starting materials in a highly chemoselective manner.
RESUMO
The design of stereodivergent transformations is of great interest to the synthetic community as it allows funneling of a given reaction pathway toward one stereochemical outcome or another by only minor adjustments of the reaction setup. Herein, we present a physical organic approach to invert the sense of induction in diastereoselective cyclopropanation of alkenes with N-enoxyphthalimides through rhodium(III) catalysis. Careful parametrization of catalyst-substrate molecular determinants allowed us to interrogate linear-free energy relationships and establish an intuitive and robust statistical model that correlates an extensive number of data points in high accuracy. Our multivariate correlations-steered mechanistic investigation culminated with a robust and general diastereodivergent cyclopropanation tool where the switch from trans- to cis-diastereoinduction is attributed to a mechanistic dichotomy. Selectivity might be determined by the flexibility of rhodacyclic intermediates derived from ring-opened versus -unopened phthalimides, induced by both their respective ring size and the Sterimol B1 parameter of the CpX ligand on rhodium.
Assuntos
Alcenos/química , Ciclopropanos/síntese química , Ftalimidas/química , Ródio/química , Catálise , Ciclização , Modelos Químicos , EstereoisomerismoRESUMO
A novel, electron-deficient cyclopentadienyl iridium(III) catalyst enables sequential cleavage of arene C(sp2)-H and methoxy C(sp3)-H bonds of anisoles, generating reactive metalacycles that insert difluoroalkynes to afford chromenes under mild reaction conditions. This transformation is an arylalkylation of an alkyne-a carbocarbation-via a nonchelate-assisted cleavage of two C-H bonds.
Assuntos
Alcinos/química , Anisóis/química , Benzopiranos/química , Carbono/química , Irídio/química , Alquilação , Catálise , HalogenaçãoRESUMO
CpXRh(III)-catalyzed C-H functionalization reactions are a proven method for the efficient assembly of small molecules. However, rationalization of the effects of cyclopentadienyl (CpX) ligand structure on reaction rate and selectivity has been viewed as a black box, and a truly systematic study is lacking. Consequently, predicting the outcomes of these reactions is challenging because subtle variations in ligand structure can cause notable changes in reaction behavior. A predictive tool is, nonetheless, of considerable value to the community as it would greatly accelerate reaction development. Designing a data set in which the steric and electronic properties of the CpXRh(III) catalysts were systematically varied allowed us to apply multivariate linear regression algorithms to establish correlations between these catalyst-based descriptors and the regio-, diastereoselectivity, and rate of model reactions. This, in turn, led to the development of quantitative predictive models that describe catalyst performance. Our newly described cone angles and Sterimol parameters for CpX ligands served as highly correlative steric descriptors in the regression models. Through rational design of training and validation sets, key diastereoselectivity outliers were identified. Computations reveal the origins of the outstanding stereoinduction displayed by these outliers. The results are consistent with partial η5-η3 ligand slippage that occurs in the transition state of the selectivity-determining step. In addition to the instructive value of our study, we believe that the insights gained are transposable to other group 9 transition metals and pave the way toward rational design of C-H functionalization catalysts.
Assuntos
Ciclopentanos/química , Compostos Organometálicos/química , Teoria Quântica , Ródio/química , Algoritmos , Catálise , Ligantes , Modelos Lineares , TermodinâmicaRESUMO
α,ß-Unsaturated oxime pivalates are proposed to undergo reversible C(sp(2))-H insertion with cationic Rh(III) complexes to furnish five-membered metallacycles. In the presence of 1,1-disubstituted olefins, these species participate in irreversible migratory insertion to give, after reductive elimination, 2,3-dihydropyridine products in good yields. Catalytic hydrogenation can then be used to convert these molecules into piperidines, which are important structural components of numerous pharmaceuticals.
Assuntos
Alcenos/química , Di-Hidropiridinas/síntese química , Oximas/química , Ródio/química , Alcenos/síntese química , Catálise , Di-Hidropiridinas/química , Hidrogenação , Oximas/síntese química , EstereoisomerismoAssuntos
Azóis/química , Azóis/síntese química , Catálise , Bases de Lewis/química , EstereoisomerismoRESUMO
The present Full Paper article discloses a survey of our recent results obtained in the context of the enantioselective halogenation-initiated semi-pinacol rearrangement. Commencing with the fluorination/semi-pinacol reaction first and moving to the heavier halogens (bromine and iodine) second, the scope and limitations of the halogenative phase-transfer methodology will be discussed and compared. An extension of the fluorination/semi-pinacol reaction to the ring-expansion of five-membered allylic cyclopentanols will be also described, as well as some preliminary results on substrates prone to desymmetrization will be given. Finally, the present manuscript will culminate with a detailed mechanistic investigation of the canonical fluorination/semi-pinacol reaction. Our mechanistic discussion will be based on in situ reaction progress monitoring, complemented with substituent effect, kinetic isotopic effect and non-linear behaviour studies.
RESUMO
An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into ß-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.
Assuntos
Compostos Aza/química , Cicloexenos/química , Hidrocarbonetos Fluorados/química , Hidrocarbonetos Fluorados/síntese química , Aminas/química , Boranos/química , Catálise , Compostos de Diazônio/química , Estrutura Molecular , EstereoisomerismoRESUMO
An efficient, quantitative deracemization strategy for optically inactive allylic cycloalkanols has been achieved using the biphasic halogenative semi-pinacol reaction protocol. The resultant ß-halo spiroketones, containing three contiguous stereogenic centers, were easily recovered with high diastereomeric and enantiomeric purities following conventional silica gel chromatography. The optically active products could be further manipulated chemically, affording synthetically interesting scaffolds with complete preservation of stereoisomeric integrity.
RESUMO
The present manuscript describes a high-yielding enantioselective semipinacol transposition, initiated by an electrophilic iodination event. The title transformation makes use of the anionic phase-transfer catalysis (PTC) paradigm for chirality induction. Thus, when combined appropriately, the insoluble cationic iodinating reagent S9 and the lipophilic phosphoric acid L9 act as an efficient source of chiral iodine that performs the semipinacol transposition of strained allylic alcohols A(x) to ß-iodo spiroketones B(x) in good yields and with high levels of diastereo- and enantio-induction. The product ß-iodo spiroketones could be derivatized stereospecifically and without stereoerosion, giving rise to products inaccessible directly from a semipinacol rearrangement.
RESUMO
In this paper, the first stereoselective annulation reaction between α-cyano-1,4-diketones and ynals, mediated by catalytic amounts of a triazolium salt precatalyst and cocatalytic amounts of a weak carboxylate base, is disclosed. The title transformation proceeds smoothly under mild reaction conditions and generates three contiguous stereogenic centers, one of which is a quaternary acetal carbon. This reaction tolerates a wide variety of electronically distinct substituents on both reaction partners and affords privileged bicyclic scaffolds in 61-90% isolated yields and with up to 20:1 diastereomeric preference.
Assuntos
Alcinos/química , Cetonas/química , Metano/análogos & derivados , Nitrilas/química , Catálise , Metano/química , Estrutura Molecular , EstereoisomerismoRESUMO
Herein, the first enantioselective total synthesis of a number of biologically relevant (-)-epicatechin conjugates is described. The success of this synthesis relied on (i) optimized conditions for the stereospecific cyclization step leading to the catechin C ring; on (ii) efficient conjugation reactions; and on (iii) optimized deprotection sequences. These standard compounds have been subsequently used to elucidate for the first time the pattern of (-)-epicatechin conjugates present in four different human biological fluids following (-)-epicatechin absorption.
Assuntos
Líquidos Corporais/química , Catequina/análogos & derivados , Catequina/síntese química , Catequina/análise , Catequina/sangue , Catequina/urina , Ciclização , Humanos , Estrutura Molecular , EstereoisomerismoRESUMO
After absorption in the gastrointestinal tract, (-)-epicatechin is extensively transformed into various conjugated metabolites. These metabolites, chemically different from the aglycone forms found in foods, are the compounds that reach the circulatory system and the target organs. Therefore, it is imperative to identify and quantify these circulating metabolites to investigate their roles in the biological effects associated with (-)-epicatechin intake. Using authentic synthetic standards of (-)-epicatechin sulfates, glucuronides, and O-methyl sulfates, a novel LC-MS/MS-MRM analytical methodology to quantify (-)-epicatechin metabolites in biological matrices was developed and validated. The optimized method was subsequently applied to the analysis of plasma and urine metabolites after consumption of dark chocolate, an (-)-epicatechin-rich food, by humans. (-)-Epicatechin-3'-ß-d-glucuronide (C(max) 290 ± 49 nM), (-)-epicatechin 3'-sulfate (C(max) 233 ± 60 nM), and 3'-O-methyl epicatechin sulfates substituted in the 4', 5, and 7 positions were the most relevant (-)-epicatechin metabolites in plasma. When plasmatic metabolites were divided into their substituent groups, it was revealed that (-)-epicatechin glucuronides, sulfates, and O-methyl sulfates represented 33 ± 4, 28 ± 5, and 33 ± 4% of total metabolites (AUC(0-24)(h)), respectively, after dark chocolate consumption. Similar metabolites were found in urine samples collected over 24h. The total urine excretion of (-)-epicatechin was 20 ± 2% of the amount ingested. In conclusion, we describe the entire metabolite profile and its degree of elimination after administration of (-)-epicatechin-containing food. These results will help us understand more precisely the mechanisms and the main metabolites involved in the beneficial physiological effects of flavanols.