Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681457

RESUMO

Hyperosmolality can occur during industrial fed-batch cultivation processes of Chinese hamster ovary (CHO) cells as highly concentrated feed and base solutions are added to replenish nutrients and regulate pH values. Some effects of hyperosmolality, such as increased cell size and growth inhibition, have been elucidated by previous research, but the impact of hyperosmolality and the specific effects of the added osmotic-active reagents have rarely been disentangled. In this study, CHO cells were exposed to four osmotic conditions between 300 mOsm/kg (physiologic condition) and 530 mOsm/kg (extreme hyperosmolality) caused by the addition of either high-glucose-supplemented industrial feed or mannitol as an osmotic control. We present novel single-cell cultivation data revealing heterogeneity in mass gain and cell division in response to these treatments. Exposure to extreme mannitol-induced hyperosmolality and to high-glucose-oversupplemented feed causes cell cycle termination, mtDNA damage, and mitochondrial membrane depolarization, which hints at the onset of premature stress-induced senescence. Thus, this study shows that both mannitol-induced hyperosmolality (530 mOsm/kg) and glucose overfeeding induce severe negative effects on cell growth and mitochondrial activity; therefore, they need to be considered during process development for commercial production.


Assuntos
Glucose , Análise de Célula Única , Animais , Células CHO , Cricetinae , Cricetulus , Glucose/metabolismo , Manitol/farmacologia
2.
Appl Microbiol Biotechnol ; 106(7): 2569-2586, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35312825

RESUMO

Chinese hamster ovary (CHO) cells are the most commonly used host cell lines for therapeutic protein production. Exposure of these cells to highly concentrated feed solution during fed-batch cultivation can lead to a non-physiological increase in osmolality (> 300 mOsm/kg) that affects cell physiology, morphology, and proteome. As addressed in previous studies (and indeed, as recently addressed in our research), hyperosmolalities of up to 545 mOsm/kg force cells to abort proliferation and gradually increase their volume-almost tripling it. At the same time, CHO cells also show a significant hyperosmolality-dependent increase in mitochondrial activity. To gain deeper insight into the molecular mechanisms that are involved in these processes, as detailed in this paper, we performed a comparative quantitative label-free proteome study of hyperosmolality-exposed CHO cells compared with control cells. Our analysis revealed differentially expressed key proteins that mediate mitochondrial activation, oxidative stress amelioration, and cell cycle progression. Our studies also demonstrate a previously unknown effect: the strong regulation of proteins can alter both cell membrane stiffness and permeability. For example, we observed that three types of septins (filamentous proteins that form diffusion barriers in the cell) became strongly up-regulated in response to hyperosmolality in the experimental setup. Overall, these new observations correlate well with recent CHO-based fluxome and transcriptome studies, and reveal additional unknown proteins involved in the response to hyperosmotic pressure by over-concentrated feed in mammalian cells.Key points• First-time comparative proteome analysis of CHO cells exposed to over-concentrated feed.• Discovery of membrane barrier-forming proteins up-regulation under hyperosmolality.• Description of mitochondrial and protein chaperones activation in treated cells.


Assuntos
Células CHO , Técnicas de Cultura de Células , Proteoma , Animais , Células CHO/metabolismo , Cricetinae , Cricetulus , Concentração Osmolar
3.
Biotechnol Bioeng ; 118(6): 2348-2359, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751545

RESUMO

Exposure of Chinese hamster ovary cells (CHO) to highly concentrated feed solution during fed-batch cultivation is known to result in an unphysiological osmolality increase (>300 mOsm/kg), affecting cell physiology and morphology. Extending previous observation on osmotic adaptation, the present study investigates for the first time potential effects of hyperosmolality on CHO cells on both population and single-cell level. We intentionally exposed CHO cells to hyperosmolality of up to 545 mOsm/kg during fed-batch cultivation. In concordance with existing research data, hyperosmolality-exposed CHO cells showed a nearly triplicated volume accompanied by ablation of proliferation. On the molecular level, we observed a strong hyperosmolality-dependent increase in mitochondrial activity in CHO cells compared to control. In contrast to mitochondrial activity, hyperosmolality-dependent proliferation arrest of CHO cells was not accompanied by DNA accumulation or caspase-3/7-mediated apoptosis. Notably, we demonstrate for the first time a formation of up to eight multiple, small nuclei in single hyperosmolality-stressed CHO cells. The here presented observations reveal previously unknown hyperosmolality-dependent morphological changes in CHO cells and support existing data on the osmotic response in mammalian cells.


Assuntos
Células CHO , Tamanho Celular , Concentração Osmolar , Animais , Apoptose , Técnicas de Cultura Celular por Lotes , Ciclo Celular , Proliferação de Células , Cricetulus , Potencial da Membrana Mitocondrial , Microscopia Confocal , Mitocôndrias/fisiologia , Osmose , Análise de Célula Única
4.
Biotechnol J ; 13(3): e1700232, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29145694

RESUMO

Promoters play a pivotal role in integrating and processing the signals related to transcription initiation. Strong natural viral promoters, such as hCMV or SV40E, have been routinely employed to achieve a high rate of gene expression in ubiquitously used Chinese hamster ovary (CHO) cells. However, viral promoters are susceptible to epigenetic silencing and lack precise regulation levers. This has paved the way to more sensible control elements: endogenous, inducible, and synthetic promoters. In this review we summarize and discuss the use of natural viral, mammalian, and endogenous promoters, as well as recent advances in synthetic promoters and inducible systems for protein expression in CHO cells. Not only the level of transcription, but its long-term stability is crucial for recombinant protein production. Epigenetic chromatin-modifying elements, such as ubiquitously acting chromatin opening elements (UCOEs), matrix attachment regions (MARs), insulators and stabilizing anti-repressors (STARs) significantly improve transcription levels over extended cultivation time and are also discussed here. This review provides up-to date information to facilitate the choice of a suitable promoter and adjacent chromatin-modifying elements to maximize transgene expression as well as ensure long-term expression stability in CHO cell culture.


Assuntos
Células CHO , Montagem e Desmontagem da Cromatina/genética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Animais , Cricetulus , Regulação da Expressão Gênica/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA