Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958668

RESUMO

In vivo studies of formulation performance with in vitro and/or in silico simulations are often limited by significant gaps in our knowledge of the interaction between administered dosage forms and the human gastrointestinal tract. This work presents a novel approach for the investigation of gastric motility influence on dosage form performance, by combining biopredictive dissolution tests in an innovative PhysioCell apparatus with mechanistic physiology-based pharmacokinetic modeling. The methodology was based on the pharmacokinetic data from a large (n = 118) cohort of healthy volunteers who ingested a capsule containing a highly soluble and rapidly absorbed drug under fasted conditions. The developed dissolution tests included biorelevant media, varied fluid flows, and mechanical stress events of physiological timing and intensity. The dissolution results were used as inputs for pharmacokinetic modeling that led to the deduction of five patterns of gastric motility and their prevalence in the studied population. As these patterns significantly influenced the observed pharmacokinetic profiles, the proposed methodology is potentially useful to other in vitro-in vivo predictions involving immediate-release oral dosage forms.

2.
Pharmaceutics ; 15(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37765193

RESUMO

Tableting of biomolecules is a challenging formulation phase due to their sensitivity to various process parameters, such as compression pressure, process dynamics, or the temperature generated. In the present study, pancreatin was employed as a model enzyme mixture, which was formulated in tablet form utilizing the synergistic effects of brittle and plastic excipients (dibasic calcium phosphate and microcrystalline cellulose, respectively). The effect of varying compaction pressure and lubricant concentration on the generated temperature and enzymatic activity was evaluated. The tablets were analyzed for pancreatin content and the activity of two enzymes (protease and amylase) using pharmacopoeial tests. This study indicated that the formulations proposed here allow tableting over a wide range of compaction pressures without adversely affecting pancreatin content and its enzymatic activity.

3.
Pharmaceutics ; 15(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37631270

RESUMO

Gastric mechanical stress often impacts drug dissolution from solid oral dosage forms, but in vitro experiments cannot recreate the substantial variability of gastric motility in a reasonable time. This study, for the first time, combines a novel dissolution apparatus with the design of experiments (DoE) and machine learning (ML) to overcome this obstacle. The workflow involves the testing of soft gelatin capsules in a set of fasted-state biorelevant dissolution experiments created with DoE. The dissolution results are used by an ML algorithm to build the classification model of the capsule's opening in response to intragastric stress (IS) within the physiological space of timing and magnitude. Next, a random forest algorithm is used to model the further drug dissolution. The predictive power of the two ML models is verified with independent dissolution tests, and they outperform a polynomial-based DoE model. Moreover, the developed tool reasonably simulates over 50 dissolution profiles under varying IS conditions. Hence, we prove that our method can be utilized for the simulation of dissolution profiles related to the multiplicity of individual gastric motility patterns. In perspective, the developed workflow can improve virtual bioequivalence trials and the patient-centric development of immediate-release oral dosage forms.

4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37259389

RESUMO

Sprinkle formulations represent an interesting concept of medicinal products aimed at the steadily growing population of patients suffering from swallowing difficulties (dysphagia). In the present work, immediate-release sprinkle MUPS (multiple-unit pellet system) containing rosuvastatin calcium as a model drug substance was successfully developed. The formulation was prepared by drug layering technique using novel calcium phosphate-based starting pellets (PharSQ® Spheres CM) of three different particle sizes. The study showed that the developed multiparticulates were characterized by uniform distribution of coating layers thickness, as well as fast dissolution rate (more than 85% of rosuvastatin calcium dissolved within 30 min, as required by the relevant USP/NF monograph). Rosuvastatin calcium, like other statins, has a bitter, unpleasant taste. Investigations conducted with an electronic tongue suggested that the developed formulation achieved the desired taste-masking efficiency. The effect was found to be particle size-dependent, improving as the size of the multiparticulates increased.

5.
Int J Pharm ; 641: 123061, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37211237

RESUMO

Biorelevant dissolution tests of oral solid dosage forms open the gate to valid in vitro-in vivo predictions (IVIVP). A recently developed apparatus, PhysioCell, allows mimicking the fluid flow and pressure waves occurring in the human fasted stomach. In this work, we used the PhysioCell to perform IVIVP for vortioxetine immediate-release (IR) tablets: the originator (Brintellix) and generic product candidates (VORTIO). The dissolved drug was monitored in the gastric (StressCell) and intestinal (Collection Vessel) compartments that contained biorelevant media. Simulated intermittent gastric stress at 15 min and "housekeeping wave" at 30 min increased the dissolution of Brintellix formulations only. A mechanistic model that best described the observations involved the first-order tablet disintegration with a stress-induced enhancement for Brintellix, dissolution of solid particles in the StressCell, and drug transfer to the Collection Vessel. Then, a semi-mechanistic pharmacokinetic model with dissolution parameters as inputs simulated vortioxetine plasma concentrations in healthy volunteers after single and multiple dosing of Brintellix. Despite different dissolution characteristics, VORTIO provided similar concentration profiles to the originator. In conclusion, PhysioCell dissolution tests, combined with semi-mechanistic IVIVP, can be successfully used to develop IR dosage forms exhibiting gastric stress-related effects.


Assuntos
Química Farmacêutica , Humanos , Solubilidade , Vortioxetina , Fluxo de Trabalho , Administração Oral , Comprimidos , Liberação Controlada de Fármacos
6.
Chem Biodivers ; 18(3): e2000969, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33438337

RESUMO

The present article reports results of analysis of carboxylic acids in leaves of Iris species from Ukraine using a gas chromatography (GC) method with mass spectrometric (MS) detection (GC/MS). Carboxylic acids play significant roles in contemporary society as evidenced by multiple applications in fields of medicine, agriculture, pharmacy, food, and other industries. Study of natural plant products as a source of organic acids is of particular interest. Carboxylic acid composition of leaves of Iris hungarica Waldst. & Kit., Iris germanica L., Iris pallida Lam., and Iris variegate L. was studied for the first time applying GC/MS method. The mass spectrums of compounds were matched with NIST and WILEY Libraries. The GC/MS analysis revealed the presence of 26 common acids in the plant raw materials studied. The short-chain carboxylic acids, such as citric (1337.5-12364.4 mg/kg), malic (50.8-4558.0 mg/kg) and oxalic (1199.0-3435.2 mg/kg) acids were contained in significantly high quantity in all samples. Ferulic, p-coumaric and vanillic acids were the most abundant among phenolic acids. α-Linolenic acid was dominant in the leaves of I. germanica (869.5 mg/kg), I. pallida (753.3 mg/kg), and I. variegate (250.3 mg/kg) among polyunsaturated fatty acids, however, linoleic acid prevailed in the plant raw material of I. hungarica (1150.7 mg/kg). Since the leaves of Iris species studied contain carboxylic acids with diverse pharmacological activity, extracts of these raw materials are perspective for development food supplements and medicines.


Assuntos
Ácidos Carboxílicos/análise , Gênero Iris/química , Compostos Fitoquímicos/análise , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/química , Especificidade da Espécie , Ucrânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA