Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39206541

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is characterized by weakening and dilatation of the aortic wall in the abdomen. The aim of this study was to gain insight into cell-specific mechanisms involved in AAA pathophysiology by analyzing the (phospho)proteome of vascular smooth muscle cells derived from patients with AAA compared with those of healthy donors. METHODS: A (phospho)proteomics analysis based on tandem mass spectrometry was performed on vascular smooth muscle cells derived from patients with AAA (n=24) and healthy, control individuals (C-SMC, n=8). Following protein identification and quantification using MaxQuant, integrative inferred kinase activity analysis was used to calculate kinase activity scores. RESULTS: Expression differences between vascular smooth muscle cells derived from patients with AAA and healthy, control individuals were predominantly found in proteins involved in ECM (extracellular matrix) remodeling (THSD4 [thrombospondin type-1 domain-containing protein 4] and ADAMTS1 [A disintegrin and metalloproteinase with thrombospondin motifs 1]), energy metabolism (GYS1 [glycogen synthase 1] and PCK2 [phosphoenolpyruvate carboxykinase 2, mitochondrial]), and contractility (CACNA2D1 [calcium voltage-dependent channel subunit α-2/δ-1] and TPM1 [tropomyosin α-1 chain]). Phosphorylation patterns on proteins related to actin cytoskeleton organization dominated the phosphoproteome of vascular smooth muscle cells derived from patients with AAA . Besides, phosphorylation changes on proteins related to energy metabolism (GYS1), contractility (PARVA [α-parvin], PPP1R12A [protein phosphatase 1 regulatory subunit 12A], and CALD1 [caldesmon 1]), and intracellular communication (GJA1 [gap junction α-1 protein]) were seen. Kinase activity of NUAK1 (NUAK family SNF1-like kinase 1), FYN (tyrosine-protein kinase Fyn), MAPK7 (mitogen-activated protein kinase 7), and STK10 (serine/threonine kinase 10) was different in vascular smooth muscle cells derived from patients with AAA compared with those from healthy, control individuals. CONCLUSIONS: This study revealed changes in expression and phosphorylation levels of proteins involved in various processes responsible for AAA progression and development (eg, energy metabolism, ECM remodeling, actin cytoskeleton organization, contractility, intracellular communication, and cell adhesion). These newly identified proteins, phosphosites, and related kinases provide further insight into the underlying mechanism of vascular smooth muscle cell dysfunction within the aneurysmal wall. Our omics data thereby offer the opportunity to study the relevance, either as drug target or biomarker, of these proteins in AAA development.

3.
J Vis Exp ; (180)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35253802

RESUMO

Smooth muscle cells (SMCs) are the predominant cell type in the aortic media. Their contractile machinery is important for the transmission of force in the aorta and regulates vasoconstriction and vasodilation. Mutations in genes encoding for the SMC contractile apparatus proteins are associated with aortic diseases, such as thoracic aortic aneurysms. Measuring SMC contraction in vitro is challenging, especially in a high-throughput manner, which is essential for screening patient material. Currently available methods are not suitable for this purpose. This paper presents a novel method based on electric cell-substrate impedance sensing (ECIS). First, an explant protocol is described to isolate patient-specific human primary SMCs from aortic biopsies and patient-specific human primary dermal fibroblasts for the study of aortic aneurysms. Next, a detailed description of a new contraction method is given to measure the contractile response of these cells, including the subsequent analysis and suggestion for comparing different groups. This method can be used to study the contraction of adherent cells in the context of translational (cardiovascular) studies and patient and drug screening studies.


Assuntos
Actinas , Aneurisma da Aorta Torácica , Actinas/metabolismo , Aorta/patologia , Células Cultivadas , Humanos , Contração Muscular , Miócitos de Músculo Liso/patologia , Vasoconstrição
4.
Heart Rhythm O2 ; 3(1): 97-104, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243441

RESUMO

BACKGROUND: In obstructive sleep apnea (OSA), intermittent hypoxemia and intrathoracic pressure fluctuations may increase atrial fibrillation (AF) susceptibility by cholinergic activation. OBJECTIVE: To investigate short-term atrial electrophysiological consequences of obstructive respiratory events, simulated by intermittent negative upper airway pressure (INAP), and the role of atrial acetylcholine-regulated potassium current (I K,ACh) activated by the M2 receptor. METHODS: In sedated (2% isoflurane), spontaneously breathing rats, INAP was applied noninvasively by a negative pressure device for 1 minute, followed by a resting period of 4 minutes. INAP was applied repeatedly throughout 70 minutes, followed by a 2-hour recovery period. Atrial effective refractory period (AERP) and AF inducibility were determined throughout the protocol. To study INAP-induced I K,ACh activation, protein levels of protein kinase C (PKCƐ) were determined in membrane and cytosolic fractions of left atrial (LA) tissue by Western blotting. Moreover, an I K,ACh inhibitor (XAF-1407: 1 mg/kg) and a muscarinic receptor inhibitor (atropine: 1 µg/kg) were investigated. RESULTS: In vehicle-treated rats, repetitive INAP shortened AERP (37 ± 3 ms vs baseline 44 ± 3 ms; P = .001) and increased LA membrane PKCƐ content relative to cytosolic levels. Upon INAP recovery, ratio of PKCƐ membrane to cytosol content normalized and INAP-induced AERP shortening reversed. Both XAF-1407 and atropine increased baseline AERP (control vs XAF-1407: 61 ± 4 ms; P > .001 and control vs atropine: 58 ± 3 ms; P = .011) and abolished INAP-associated AERP shortening. CONCLUSION: Short-term simulated OSA is associated with a progressive, but transient, AERP shortening and a PKCƐ translocation to LA membrane. Pharmacological I K,ACh and muscarinic receptor inhibition prevented transient INAP-induced AERP shortening, suggesting an involvement of I K,ACh in the transient arrhythmogenic AF substrate in OSA.

5.
Eur J Clin Invest ; 52(4): e13697, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34698377

RESUMO

BACKGROUND: Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS: In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS: Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-ß signalling and regulatory RNA expression. CONCLUSION: This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.


Assuntos
Aneurisma Aórtico/etiologia , Dissecção Aórtica/etiologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA