Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomolecules ; 13(5)2023 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-37238706

RESUMO

The 4-aminoquinoline drugs, such as chloroquine (CQ), amodiaquine or piperaquine, are still commonly used for malaria treatment, either alone (CQ) or in combination with artemisinin derivatives. We previously described the excellent in vitro activity of a novel pyrrolizidinylmethyl derivative of 4-amino-7-chloroquinoline, named MG3, against P. falciparum drug-resistant parasites. Here, we report the optimized and safer synthesis of MG3, now suitable for a scale-up, and its additional in vitro and in vivo characterization. MG3 is active against a panel of P. vivax and P. falciparum field isolates, either alone or in combination with artemisinin derivatives. In vivo MG3 is orally active in the P. berghei, P. chabaudi, and P. yoelii models of rodent malaria with efficacy comparable, or better, than that of CQ and of other quinolines under development. The in vivo and in vitro ADME-Tox studies indicate that MG3 possesses a very good pre-clinical developability profile associated with an excellent oral bioavailability, and low toxicity in non-formal preclinical studies on rats, dogs, and non-human primates (NHP). In conclusion, the pharmacological profile of MG3 is in line with those obtained with CQ or the other quinolines in use and seems to possess all the requirements for a developmental candidate.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Quinolinas , Ratos , Animais , Cães , Antimaláricos/uso terapêutico , Plasmodium falciparum , Cloroquina/farmacologia , Quinolinas/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Artemisininas/farmacologia
2.
ChemMedChem ; 17(21): e202200355, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36089546

RESUMO

To improve the metabolic stability of a 4,4'-oxybisbenzoyl-based novel and potent (nanomolar-range IC50 ) antiplasmodial agent previously described by us, in silico-guided structure-activity relationship (SAR) campaigns have been conducted to substitute its peptide decorations with more metabolically stable residues. The effects of the various structural modifications were then correlated with the antiplasmodial activity in vitro in phenotypic assays. Among the several derivatives synthetized and compared with the 3D-pharmacophoric map of the original lead, a novel compound, characterized by a western tert-butyl glycine residue and an eastern 1S,2S-aminoacyclohexanol, showed low-nanomolar-range antiplasmodial activity, no signs of cross-resistance and, most importantly, 47-fold improved Phase I metabolic stability when incubated with human liver microsomes. These results highlight the efficacy of in silico-guided SAR campaigns which will allow us to further optimize the structure of the new lead aiming at testing its efficacy in vivo using different routes of administration.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/química , Plasmodium falciparum , Amidas/farmacologia , Amidas/uso terapêutico , Inibidores do Crescimento/farmacologia , Inibidores do Crescimento/uso terapêutico , Malária Falciparum/tratamento farmacológico , Relação Estrutura-Atividade
3.
Bioconjug Chem ; 31(3): 513-519, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31927891

RESUMO

Perfluorinated organic compounds (PFCs) are nontoxic, biocompatible, bioavailable, and bioorthogonal species which possess the unique ability to segregate away from both polar and nonpolar solvents producing a compact fluorophilic phase. Traditional techniques of fluorous chemical proteomics are generally applied to enrich biological samples in target protein(s) exploiting this property of PFCs to build fluorinated probes able to covalently bind to protein ensembles and being selectively extracted by fluorophilic solvents. Aiming at building a strategy able to avoid irreversible modification of the analyzed biosystem, a novel fully noncovalent probe is presented as an enabling tool for the recognition and isolation of biological protein(s). In our strategy, both the fluorophilic extraction and the biorecognition of a selected protein successfully occur via the establishment of reversible but selective interactions.


Assuntos
Fluorocarbonos/química , Sondas Moleculares/química , Proteínas/química , Adsorção , Modelos Moleculares , Papaína/química , Conformação Proteica
4.
ChemMedChem ; 14(23): 1982-1994, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31665565

RESUMO

The treatment of malaria, the most common parasitic disease worldwide and the third deadliest infection after HIV and tuberculosis, is currently compromised by the dramatic increase and diffusion of drug resistance among the various species of Plasmodium, especially P. falciparum (Pf). In this view, the development of new antiplasmodial agents that are able to act via innovative mechanisms of action, is crucial to ensure efficacious antimalarial treatments. In one of our previous communications, we described a novel class of compounds endowed with high antiplasmodial activity, characterized by a pharmacophore never described before as antiplasmodial and identified by their 4,4'-oxybisbenzoyl amide cores. Here, through a detailed structure-activity relationship (SAR) study, we thoroughly investigated the chemical features of the reported scaffolds and successfully built a novel antiplasmodial agent active on both chloroquine (CQ)-sensitive and CQ-resistant Pf strains in the low nanomolar range, without displaying cross-resistance. Moreover, we conducted an in silico pharmacophore mapping.


Assuntos
Antimaláricos/síntese química , Cloroquina/análogos & derivados , Cloroquina/síntese química , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Aminas/química , Animais , Antimaláricos/farmacologia , Cloroquina/farmacologia , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Humanos , Rim/efeitos dos fármacos , Viabilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
5.
Arch Pharm (Weinheim) ; 351(12): e1800177, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30407647

RESUMO

New therapeutics are urgently needed to fight tuberculosis and mycobacteria-related diseases that are a major health hazard especially in poor countries. Natural products have been the source of important antitubercular drugs in the past and still need to receive attention as a potent reservoir of chemical structures. Fifteen known and two new (+)-usnic acid (a benzofurandione formerly isolated from lichens) enamines and hydrazones are here described and tested against sensitive and multidrug-resistant strains of mycobacteria. Among several (+)-usnic acid conjugates, PS14 and PS18 showed potent activity against both susceptible and resistant Mycobacterium tuberculosis strains (MIC values of 1-32 and 2-32 mg/L, respectively) comparable with MIC of other antitubercular drugs already in use for tuberculosis treatment.


Assuntos
Antibacterianos/síntese química , Benzofuranos/síntese química , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Mycobacterium tuberculosis/genética
6.
Molecules ; 22(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194347

RESUMO

Natural products are a prolific source for the identification of new biologically active compounds. In the present work, we studied the in vitro and in vivo antimalarial efficacy and ADME-Tox profile of a molecular hybrid (AM1) between 4-aminoquinoline and a quinolizidine moiety derived from lupinine (Lupinus luteus). The aim was to find a compound endowed with the target product profile-1 (TCP-1: molecules that clear asexual blood-stage parasitaemia), proposed by the Medicine for Malaria Venture to accomplish the goal of malaria elimination/eradication. AM1 displayed a very attractive profile in terms of both in vitro and in vivo activity. By using standard in vitro antimalarial assays, AM1 showed low nanomolar inhibitory activity against chloroquine-sensitive and resistant P. falciparum strains (range IC50 16-53 nM), matched with a high potency against P. vivax field isolates (Mean IC50 29 nM). Low toxicity and additivity with artemisinin derivatives were also demonstrated in vitro. High in vivo oral efficacy was observed in both P.berghei and P. yoelii mouse models with IC50 values comparable or better than those of chloroquine. The metabolic stability in different species and the pharmacokinetic profile in the mouse model makes AM1 a compound worth further investigation as a potential novel schizonticidal agent.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antimaláricos/química , Antimaláricos/toxicidade , Quinolizidinas/química , Quinolizidinas/farmacologia , Aminoquinolinas/toxicidade , Animais , Antimaláricos/farmacologia , Artemisininas/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos , Células HEK293 , Humanos , Concentração Inibidora 50 , Malária/tratamento farmacológico , Masculino , Camundongos , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Quinolizidinas/toxicidade , Esparteína/análogos & derivados , Esparteína/química , Esparteína/farmacologia
7.
Bioconjug Chem ; 27(12): 2911-2922, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27809498

RESUMO

Gold nanocages (AuNCs) have been shown to be a useful tool for harnessing imaging and hyperthermia therapy of cancer, thanks to their unique optical properties, low toxicity, and facile surface functionalization. Herein, we use AuNCs for selective targeting of prostate cancer cells (PC3) via specific interaction between neuropeptide Y (NPY) receptor and three different NPY analogs conjugated to AuNCs. Localized surface plasmon resonance band of the nanoconjugates was set around 800 nm, which is appropriate for in vivo applications. Long-term stability of nanoconjugates in different media was confirmed by UV-vis and DLS studies. Active NPY receptor targeting was observed by confocal microscopy showing time-dependent AuNCs cellular uptake. Activation of ERK1/2 pathway was evaluated by Western blot to confirm the receptor-mediated specific interaction with PC3. Cellular uptake kinetics were compared as a function of peptide structure. Cytotoxicity of nanoconjugates was evaluated by MTS and Annexin V assays, confirming their safety within the concentration range explored. Hyperthermia studies were carried out irradiating the cells, previously incubated with AuNCs, with a pulsed laser at 800 nm wavelength, showing a heating enhancement ranging from 6 to 35 °C above the culture temperature dependent on the irradiation power (between 1.6 and 12.7 W/cm2). Only cells treated with AuNCs underwent morphological alterations in the cytoskeleton structure upon laser irradiation, leading to membrane blebbing and loss of microvilli associated with cell migration. This effect is promising in view of possible inhibition of proliferation and invasion of cancer cells. In summary, our Au-peptide NCs proved to be an efficient theranostic nanosystem for targeted detection and activatable killing of prostate cancer cells.


Assuntos
Terapia de Alvo Molecular/métodos , Nanopartículas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Desenho de Fármacos , Ouro , Humanos , Lasers , Masculino , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Peptídeos/síntese química , Peptídeos/química , Neoplasias da Próstata/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Termografia/métodos
8.
Pharmacol Res ; 111: 155-162, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27293049

RESUMO

Tumor homing peptides (THPs) specific for a representative breast cancer cell line (MCF-7) were carefully selected basing on a phage-displayed peptide library freely available on the web, namely the "TumorHoPe: A Database of Tumor Homing Peptides". The selected THPs were synthesized and evaluated in terms of their affinity toward MCF-7 cells. Out of 5 tested THPs, 3 best-performing peptide sequences and 1 scrambled sequence were separately conjugated to spherical gold nanoparticles yielding stable nanoconjugates. THP nanoconjugates were examined for their ability to actively target MCF-7 cells in comparison to noncancerous 3T3-L1 fibroblast cells. These THP-gold nanoconjugates exhibited good selectivity and binding affinity by flow cytometry, and low cytotoxicity as assayed by cell death experiments. The uptake of targeted nanoconjugates by the breast cancer cells was confirmed by transmission electron microscopy analysis. This work demonstrates that it is possible to exploit the conjugation of short peptides selected from phage-displayed libraries to develop nanomaterials reliably endowed with tumor targeting potential irrespective of a specific knowledge of the target cell biology.


Assuntos
Neoplasias da Mama/metabolismo , Técnicas de Visualização da Superfície Celular , Portadores de Fármacos , Ouro/química , Nanopartículas Metálicas , Nanoconjugados , Biblioteca de Peptídeos , Peptídeos/metabolismo , Células 3T3-L1 , Animais , Transporte Biológico , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Composição de Medicamentos , Feminino , Humanos , Células MCF-7 , Camundongos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Peptídeos/química
10.
PLoS One ; 10(11): e0142509, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566224

RESUMO

Malaria is an infectious disease caused by Plasmodium parasites. It results in an annual death-toll of ~ 600,000. Resistance to all medications currently in use exists, and novel antimalarial drugs are urgently needed. Plasmepsin V (PmV) is an essential Plasmodium protease and a highly promising antimalarial target, which still lacks molecular characterization and drug-like inhibitors. PmV, cleaving the PExEl motif, is the key enzyme for PExEl-secretion, an indispensable parasitic process for virulence and infection. Here, we describe the accessibility of PmV catalytic pockets to inhibitors and propose a novel strategy for PmV inhibition. We also provide molecular and structural data suitable for future drug development. Using high-throughput platforms, we identified a novel scaffold that interferes with PmV in-vitro at picomolar ranges (~ 1,000-fold more active than available compounds). Via systematic replacement of P and P' regions, we assayed the physico-chemical requirements for PmV inhibition, achieving an unprecedented IC50 of ~20 pM. The hydroxyethylamine moiety, the hydrogen acceptor group in P2', the lipophilic groups upstream to P3, the arginine and other possible substitutions in position P3 proved to be critically important elements in achieving potent inhibition. In-silico analyses provided essential QSAR information and model validation. Our inhibitors act 'on-target', confirmed by cellular interference of PmV function and biochemical interaction with inhibitors. Our inhibitors are poorly performing against parasite growth, possibly due to poor stability of their peptidic component and trans-membrane permeability. The lowest IC50 for parasite growth inhibition was ~ 15 µM. Analysis of inhibitor internalization revealed important pharmacokinetic features for PExEl-based molecules. Our work disclosed novel pursuable drug design strategies for highly efficient PmV inhibition highlighting novel molecular elements necessary for picomolar activity against PmV. All the presented data are discussed in respect to human aspartic proteases and previously reported inhibitors, highlighting differences and proposing new strategies for drug development.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Domínio Catalítico/efeitos dos fármacos , Humanos , Malária Falciparum/parasitologia , Simulação de Acoplamento Molecular , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/química , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
11.
Biochim Biophys Acta ; 1840(9): 2765-75, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24769454

RESUMO

BACKGROUND: Plasmodium falciparum serine repeat antigen 5 (PfSERA5) is an abundant blood stage protein that plays an essential role in merozoite egress and invasion. The native protein undergoes extensive proteolytic cleavage that appears to be tightly regulated. PfSERA5 N-terminal fragment is being developed as vaccine candidate antigen. Although PfSERA5 belongs to papain-like cysteine protease family, its catalytic domain has a serine in place of cysteine at the active site. METHODS: In the present study, we synthesized a number of peptides from the N- and C-terminal regions of PfSERA5 active domain and evaluated their inhibitory potential. RESULTS: The final proteolytic step of PfSERA5 involves removal of a C-terminal ~6kDa fragment that results in the generation of a catalytically active ~50kDa enzyme. In the present study, we demonstrate that two of the peptides derived from the C-terminal ~6kDa region inhibit the parasite growth and also cause a delay in the parasite development. These peptides reduced the enzyme activity of the recombinant protein and co-localized with the PfSERA5 protein within the parasite, thereby indicating the specific inhibition of PfSERA5 activity. Molecular docking studies revealed that the inhibitory peptides interact with the active site of the protein. Interestingly, the peptides did not have an effect on the processing of PfSERA5. CONCLUSIONS: Our observations indicate the temporal regulation of the final proteolytic cleavage step that occurs just prior to egress. GENERAL SIGNIFICANCE: These results reinforce the role of PfSERA5 for the intra-erythrocytic development of malaria parasite and show the role of carboxy terminal ~6kDa fragments in the regulation of PfSERA5 activity. The results also suggest that final cleavage step of PfSERA5 can be targeted for the development of new anti-malarials.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Malária Falciparum/enzimologia , Plasmodium falciparum/enzimologia , Proteólise , Antígenos de Protozoários/genética , Eritrócitos/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Peptídeos/química , Peptídeos/farmacologia , Plasmodium falciparum/genética , Estrutura Terciária de Proteína
12.
FEBS J ; 281(3): 724-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24255956

RESUMO

Our previous studies showed that (-)-epigallocatechin-3-gallate (EGCG) inhibits signal transducer activator of transcription 1 (STAT1) activation. Since EGCG may be a promising lead compound for new anti-STAT1 drug design, 15 synthetic catechins, characterized by the (-)-gallocatechin-3-gallate stereochemistry, were studied in the human mammary MDA-MB-231 cell line to identify the minimal structural features that preserve the anti-STAT1 activity. We demonstrate that the presence of three hydroxyl groups of B ring and one hydroxyl group in D ring is essential to preserve their inhibitory action. Moreover, a possible molecular target of these compounds in the STAT1 pathway was investigated. Our results demonstrate a direct interaction between STAT1 protein and catechins displaying anti-STAT1 activity. In particular, surface plasmon resonance (SPR) analysis and molecular modeling indicate the presence of two putative binding sites (a and b) with different affinity. Based on docking data, site-directed mutagenesis was performed, and interaction of the most active catechins with STAT1 was studied with SPR to test whether Gln518 on site a and His568 on site b could be important for the catechin-STAT1 interaction. Data indicate that site b has higher affinity for catechins than site a as the highest affinity constant disappears in the H568A-STAT1 mutant. Furthermore, Janus kinase 2 (JAK2) kinase assay data suggest that the contemporary presence in vitro of STAT1 and catechins inhibits JAK2-elicited STAT1 phosphorylation. The very tight catechin-STAT1 interaction prevents STAT1 phosphorylation and represents a novel, specific and efficient molecular mechanism for the inhibition of STAT1 activation.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Catequina/análogos & derivados , Desenho de Fármacos , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Fator de Transcrição STAT1/antagonistas & inibidores , Substituição de Aminoácidos , Antineoplásicos/química , Antineoplásicos/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Catequina/química , Catequina/metabolismo , Catequina/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Conformação Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
13.
ChemMedChem ; 8(2): 221-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23307699

RESUMO

Au naturel! (+)-Usnic acid (green) is a weak antimalarial agent, however, in conjugation with known antimalarial scaffolds and drugs, such as dihydroartemisinin (blue), potent activity against the blood-stage parasite can be seen both in vitro and in vivo. The compound shown exhibits an IC(50) value of 1.4 nM against Plasmodium falciparum in vitro and proved nearly as efficacious as artesunate in a mouse model of infection.


Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Benzofuranos/química , Benzofuranos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Artemisininas/síntese química , Artemisininas/química , Artemisininas/uso terapêutico , Benzofuranos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Linhagem Celular , Descoberta de Drogas , Feminino , Malária Falciparum/parasitologia , Camundongos , Testes de Sensibilidade Parasitária , Ratos
14.
Bioorg Med Chem Lett ; 22(18): 5915-8, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22884991

RESUMO

We report the discovery of new potent inhibitors of the growth of Plasmodium falciparum chloroquine (CQ)-resistant W2 strain. These compounds were designed using the double drug approach by introducing a residue able to enhance the accumulation of plasmepsins inhibitors into the food vacuole. Some of the molecules were more active than CQ against CQ-resistant strain and showed good selectivity against cathepsin D.


Assuntos
Aminoácidos/farmacologia , Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Catepsina D/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Aminoácidos/química , Aminoquinolinas/química , Antimaláricos/síntese química , Antimaláricos/química , Catepsina D/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Relação Estrutura-Atividade
15.
Bioorg Med Chem ; 20(19): 5980-5, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22901673

RESUMO

Recently the N-(-)-lupinyl-derivative of 7-chloro-4-aminoquinoline ((-)-AM-1; 7-chloro-4-{N-[(1S,9aR)(octahydro-2H-quinolizin-1-yl)methyl]amino}quinoline) showed potent in vitro and in vivo activity against both Chloroquine susceptible and resistant strains of Plasmodium falciparum. However, (-)-AM-1 is synthesized starting from (-)-lupinine, an expensive alkaloid isolated from Lupinus luteus whose worldwide production is not sufficient, at present, for large market purposes. To overcome this issue, the corresponding racemic compound, derived from synthetic (±)-lupinine was considered a cheaper alternative for the development of a novel antimalarial agent. Therefore, the racemic and the 7-chloro-4-(N-(+)-lupinyl)aminoquinoline ((±)-AM-1; (+)-AM-1) were synthesized and their in vitro antimalarial activity and cytotoxicity compared with those of (-)-AM-1. The (+)-lupinine required for the synthesis of (+)-AM-1 was obtained through a not previously described lipase catalyzed kinetic resolution of (±)-lupinine. In terms of antimalarial activity, (±)-AM1 and (+)-AM1 demonstrated very good activity in vitro against both CQ-R and CQ-S strains of P. falciparum (range IC(50) 16-35 nM), and low toxicity against human normal cell lines (therapeutic index >1000), comparable with that of (-)-AM1. These results confirm that the racemate (±)-AM1 could be considered as a potential antimalarial agent, ensuring a decrease of costs of synthesis compared to (-)-AM1.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Esparteína/análogos & derivados , Aminoquinolinas/síntese química , Antimaláricos/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Lupinus/química , Esparteína/síntese química , Esparteína/química , Esparteína/farmacologia , Estereoisomerismo
16.
Org Biomol Chem ; 9(8): 2899-905, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21373679

RESUMO

Amphiphilic bile acids linked through an oligoethylene glycol to a biotin moiety were synthesized and shown to create micellar structures in aqueous environment, interact with avidin and be efficiently incorporated into hepatocyte cells, suggesting their potential as a drug delivery system against liver diseases.


Assuntos
Ácidos e Sais Biliares/química , Hepatócitos/química , Micelas , Tensoativos/química , Animais , Biotinilação , Linhagem Celular Tumoral , Camundongos , Estrutura Molecular
17.
Eur J Med Chem ; 46(6): 2083-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21429631

RESUMO

Small peptides that mimic the protein-protein interactions between falcipain-2 and egg white cystatin, an endogenous inhibitor of cysteine proteases, were designed and synthesized and their effects on falcipain-2 activity were analyzed. The mimics are characterized by the presence of different linkers: γ-aminobutyric acid, cis-4-aminocyclohexane carboxylic acid and a macrocycle formed by GABA and two cysteines joined by a disulfide linkage. Some of these compounds showed falcipain-2 inhibition in the micromolar range and produced morphological abnormalities in the Plasmodium food vacuole. Although these peptides are less potent than cystatin, considering the reduction of amino acid residues and the capacity to cross membranes, this approach could be an interesting starting point for the development of a new class of anti-malarial drugs.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , Mimetismo Molecular , Peptídeos/farmacologia , Plasmodium falciparum/enzimologia , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Modelos Moleculares , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
18.
Malar J ; 9: 208, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20642847

RESUMO

BACKGROUND: The sun-dried rind of the immature fruit of pomegranate (Punica granatum) is presently used as a herbal formulation (OMARIA, Orissa Malaria Research Indigenous Attempt) in Orissa, India, for the therapy and prophylaxis of malaria. The pathogenesis of cerebral malaria, a complication of the infection by Plasmodium falciparum, is an inflammatory cytokine-driven disease associated to an up-regulation and activity of metalloproteinase-9 and to the increase of TNF production. The in vitro anti-plasmodial activity of Punica granatum (Pg) was recently described. The aim of the present study was to explore whether the anti-malarial effect of OMARIA could also be sustained via other mechanisms among those associated to the host immune response. METHODS: From the methanolic extract of the fruit rind, a fraction enriched in tannins (Pg-FET) was prepared. MMP-9 secretion and expression were evaluated in THP-1 cells stimulated with haemozoin or TNF. The assays were conducted in the presence of the Pg-FET and its chemical constituents ellagic acid and punicalagin. The effect of urolithins, the ellagitannin metabolites formed by human intestinal microflora, was also investigated. RESULTS: Pg-FET and its constituents inhibited the secretion of MMP-9 induced by haemozoin or TNF. The effect occurred at transcriptional level since MMP-9 mRNA levels were lower in the presence of the tested compounds. Urolithins as well inhibited MMP-9 secretion and expression. Pg-FET and pure compounds also inhibited MMP-9 promoter activity and NF-kB-driven transcription. CONCLUSIONS: The beneficial effect of the fruit rind of Punica granatum for the treatment of malarial disease may be attributed to the anti-parasitic activity and the inhibition of the pro-inflammatory mechanisms involved in the onset of cerebral malaria.


Assuntos
Antimaláricos/farmacologia , Ácido Elágico/farmacologia , Taninos Hidrolisáveis/farmacologia , Lythraceae/química , Metaloproteinase 9 da Matriz/metabolismo , Bioensaio , Frutas , Regulação da Expressão Gênica/efeitos dos fármacos , Hemeproteínas/análise , Humanos , Inflamação/tratamento farmacológico , Malária Cerebral/tratamento farmacológico , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz , NF-kappa B/efeitos dos fármacos , NF-kappa B/fisiologia , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , RNA Mensageiro/análise , RNA Mensageiro/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima
19.
J Ethnopharmacol ; 125(2): 279-85, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19577622

RESUMO

AIM OF THE STUDY: Sun-dried rind of the immature fruit of Punica granatum L. (Punicaceae) (Pg) is presently used as a herbal formulation (OMARIA) in Orissa, India, for the therapy and prophylaxis of malaria. The aims of this study were (i) to assess in vitro the antiplasmodial activity of the methanolic extract, of a tannin enriched fraction and of compounds/metabolites of the antimalarial plant, (ii) to estimate the curative efficacy of the Pg extracts and (iii) to explore the mechanism of action of the antiplasmodial compounds. Urolithins, the ellagitannin metabolites, were also investigated for antiplasmodial activity. MATERIALS AND METHODS: Chloroquine-susceptible (D10) and -resistant (W2) strains of Pf were used for in vitro studies and the rodent malaria model Plasmodium berghei-BALB/c mice was used for in vivo assessments. Recombinant plasmepsins 2 and 4 were used to investigate the interference of Pg compounds with the metabolism of haemoglobin by malaria parasites. RESULTS: The Pg methanolic extract (Pg-MeOH) inhibited parasite growth in vitro with a IC(50) of 4.5 and 2.8 microg/ml, for D10 and W2 strain, respectively. The activity was found to be associated to the fraction enriched with tannins (Pg-FET, IC(50) 2.9 and 1.5 microg/ml) in which punicalagins (29.1%), punicalins, ellagic acid (13.4%) and its glycoside could be identified. Plasmepsin 2 was inhibited by Pg-MeOH extract and by Pg-FET (IC(50) 7.3 and 3.0 microg/ml), which could partly explain the antiparasitic effect. On the contrary, urolithins were inactive. Both Pg-MeOH extract and Pg-FET did not show any in vivo efficacy in the murine model. CONCLUSIONS: The in vitro studies support the use of Pg as antimalarial remedy. Possible explanations for the negative in vivo results are discussed.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Elágico/farmacologia , Taninos Hidrolisáveis/farmacologia , Lythraceae/química , Malária/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Ácido Elágico/uso terapêutico , Frutas , Hemoglobinas/metabolismo , Taninos Hidrolisáveis/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos
20.
Protein Pept Lett ; 16(1): 86-90, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19149679

RESUMO

Both stereoisomer of hydroxyethylamine (HEA) and hydroxyethylsulfide (HES) transition-state isostere inhibitors of BACE-1 were synthesized. The syn-HEA epimer resulted always more active than the anti stereoisomer independently from the P(1) and the P(1)' substituents. On the contrary, the anti epimer of the HES isostere resulted more active than the syn stereoisomer. The change of stereopreference was studied by molecular modelling.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Etilaminas/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Compostos de Sulfidrila/síntese química , Materiais Biomiméticos , Desenho de Fármacos , Etilaminas/química , Estereoisomerismo , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA