Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38681951

RESUMO

This retrospective study examined bone flap displacement during radiotherapy in 25 post-operative brain tumour patients. Though never exceeding 2.5 mm, the sheer frequency of displacement highlights the need for future research on larger populations to validate its presence and assess the potential clinical impact on planning tumour volume margins.

2.
NMR Biomed ; 37(1): e5038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37712359

RESUMO

The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured R 2 ∗ -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC-AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE-AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.


Assuntos
Artérias , Meios de Contraste , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Algoritmos , Perfusão
3.
J Neurooncol ; 165(3): 479-486, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38095775

RESUMO

BACKGROUND AND PURPOSE: Brain tumors are in general treated with a maximal safe resection followed by radiotherapy of remaining tumor including the resection cavity (RC) and chemotherapy. Anatomical changes of the RC during radiotherapy can have impact on the coverage of the target volume. The aim of the current study was to quantify the potential changes of the RC and to identify risk factors for RC changes. MATERIALS AND METHODS: Sixteen patients treated with pencil beam scanning proton therapy between October 2019 and April 2020 were retrospectively analyzed. The RC was delineated on pre-treatment computed tomography (CT) and magnetic resonance imaging, and weekly CT-scans during treatment. Isotropic expansions were applied to the pre-treatment RC (1-5 mm). The percentage of volume of the RC during treatment within the expanded pre-treatment volumes was quantified. Potential risk factors (volume of RC, time interval surgery-radiotherapy and relationship of RC to the ventricles) were evaluated using Spearman's rank correlation coefficient. RESULTS: The average variation in relative RC volume during treatment was 26.1% (SD 34.6%). An expansion of 4 mm was required to cover > 95% of the RC volume in > 90% of patients. There was a significant relationship between the absolute volume of the pre-treatment RC and the volume changes during treatment (Spearman's ρ = - 0.644; p = 0.007). CONCLUSION: RCs are dynamic after surgery. Potentially, an additional margin in brain cancer patients with an RC should be considered, to avoid insufficient target coverage. Future research on local recurrence patterns is recommended.


Assuntos
Neoplasias Encefálicas , Radioterapia de Intensidade Modulada , Humanos , Estudos Retrospectivos , Terapia Combinada , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Dosagem Radioterapêutica
4.
Phys Med Biol ; 68(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37494944

RESUMO

Objective. The Dutch proton robustness evaluation protocol prescribes the dose of the clinical target volume (CTV) to the voxel-wise minimum (VWmin) dose of 28 scenarios. This results in a consistent but conservative near-minimum CTV dose (D98%,CTV). In this study, we analyzed (i) the correlation between VWmin/voxel-wise maximum (VWmax) metrics and actually delivered dose to the CTV and organs at risk (OARs) under the impact of treatment errors, and (ii) the performance of the protocol before and after its calibration with adequate prescription-dose levels.Approach. Twenty-one neuro-oncological patients were included. Polynomial chaos expansion was applied to perform a probabilistic robustness evaluation using 100,000 complete fractionated treatments per patient. Patient-specific scenario distributions of clinically relevant dosimetric parameters for the CTV and OARs were determined and compared to clinical VWmin and VWmax dose metrics for different scenario subsets used in the robustness evaluation protocol.Main results. The inclusion of more geometrical scenarios leads to a significant increase of the conservativism of the protocol in terms of clinical VWmin and VWmax values for the CTV and OARs. The protocol could be calibrated using VWmin dose evaluation levels of 93.0%-92.3%, depending on the scenario subset selected. Despite this calibration of the protocol, robustness recipes for proton therapy showed remaining differences and an increased sensitivity to geometrical random errors compared to photon-based margin recipes.Significance. The Dutch proton robustness evaluation protocol, combined with the photon-based margin recipe, could be calibrated with a VWmin evaluation dose level of 92.5%. However, it shows limitations in predicting robustness in dose, especially for the near-maximum dose metrics to OARs. Consistent robustness recipes could improve proton treatment planning to calibrate residual differences from photon-based assumptions.


Assuntos
Neoplasias , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Prótons , Calibragem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Órgãos em Risco , Terapia com Prótons/métodos
5.
Sci Rep ; 12(1): 21820, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528673

RESUMO

Quantitative MR imaging is becoming more feasible to be used in clinical work since new approaches have been proposed in order to substantially accelerate the acquisition and due to the possibility of synthetically deriving weighted images from the parametric maps. However, their applicability has to be thoroughly validated in order to be included in clinical practice. In this pilot study, we acquired Magnetic Resonance Image Compilation scans to obtain T1, T2 and PD maps in 14 glioma patients. Abnormal tissue was segmented based on conventional images and using a deep learning segmentation technique to define regions of interest (ROIs). The quantitative T1, T2 and PD values inside ROIs were analyzed using the mean, the standard deviation, the skewness and the kurtosis and compared to the quantitative T1, T2 and PD values found in normal white matter. We found significant differences in pre-contrast T1 and T2 values between abnormal tissue and healthy tissue, as well as between T1w-enhancing and non-enhancing regions. ROC analysis was used to evaluate the potential of quantitative T1 and T2 values for voxel-wise classification of abnormal/normal tissue (AUC = 0.95) and of T1w enhancement/non-enhancement (AUC = 0.85). A cross-validated ROC analysis found high sensitivity (73%) and specificity (73%) with AUCs up to 0.68 on the a priori distinction between abnormal tissue with and without T1w-enhancement. These results suggest that normal tissue, abnormal tissue, and tissue with T1w-enhancement are distinguishable by their pre-contrast quantitative values but further investigation is needed.


Assuntos
Glioma , Substância Branca , Humanos , Projetos Piloto , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Curva ROC
7.
Radiother Oncol ; 168: 241-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35093408

RESUMO

PURPOSE: Treatment-related toxicity after irradiation of brain tumours has been underreported in the literature. Furthermore, there is considerable heterogeneity on how and when toxicity is evaluated. The aim of this European Particle Network (EPTN) collaborative project is to develop recommendations for uniform follow-up and toxicity scoring of adult brain tumour patients treated with radiotherapy. METHODS: A Delphi method-based consensus was reached among 24 international radiation-oncology experts in the field of neuro-oncology concerning the toxicity endpoints, evaluation methods and time points. RESULTS: In this paper, we present a basic framework for consistent toxicity scoring and follow-up, using multiple levels of recommendation. Level I includes all recommendations that are considered minimum of care, whereas level II and III are optional evaluations in the advanced clinical or research setting, respectively. Per outcome domain, the clinical endpoints and evaluation methods per level are listed. Where relevant, the organ at risk threshold doses for recommended referral to specific organ specialists are defined. CONCLUSION: These consensus-based recommendations for follow-up will enable the collection of uniform toxicity data of brain tumour patients treated with radiotherapy. With adoptation of this standard, collaboration will be facilitated and we can further propel the research field of radiation-induced toxicities relevant for these patients. An online tool to implement this guideline in clinical practice is provided at www.cancerdata.org.


Assuntos
Terapia com Prótons , Neoplasias da Base do Crânio , Adulto , Encéfalo , Consenso , Seguimentos , Humanos , Terapia com Prótons/efeitos adversos , Prótons , Neoplasias da Base do Crânio/radioterapia
8.
Radiother Oncol ; 160: 259-265, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015385

RESUMO

BACKGROUND AND PURPOSE: To update the digital online atlas for organs at risk (OARs) delineation in neuro-oncology based on high-quality computed tomography (CT) and magnetic resonance (MR) imaging with new OARs. MATERIALS AND METHODS: In this planned update of the neurological contouring atlas published in 2018, ten new clinically relevant OARs were included, after thorough discussion between experienced neuro-radiation oncologists (RTOs) representing 30 European radiotherapy-oncology institutes. Inclusion was based on daily practice and research requirements. Consensus was reached for the delineation after critical review. Contouring was performed on registered CT with intravenous (IV) contrast (soft tissue & bone window setting) and 3 Tesla (T) MRI (T1 with gadolinium & T2 FLAIR) images of one patient (1 mm slices). For illustration purposes, delineation on a 7 T MRI without IV contrast from a healthy volunteer was added. OARs were delineated by three experienced RTOs and a neuroradiologist based on the relevant literature. RESULTS: The presented update of the neurological contouring atlas was reviewed and approved by 28 experts in the field. The atlas is available online and includes in total 25 OARs relevant to neuro-oncology, contoured on CT and MRI T1 and FLAIR (3 T & 7 T). Three-dimensional (3D) rendered films are also available online. CONCLUSION: In order to further decrease inter- and intra-observer OAR delineation variability in the field of neuro-oncology, we propose the use of this contouring atlas in photon and particle therapy, in clinical practice and in the research setting. The updated atlas is freely available on www.cancerdata.org.


Assuntos
Radioterapia (Especialidade) , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Órgãos em Risco , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA