Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ophthalmol Sci ; 4(4): 100472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560277

RESUMO

Purpose: Periodontitis, a ubiquitous severe gum disease affecting the teeth and surrounding alveolar bone, can heighten systemic inflammation. We investigated the association between very severe periodontitis and early biomarkers of age-related macular degeneration (AMD), in individuals with no eye disease. Design: Cross-sectional analysis of the prospective community-based cohort United Kingdom (UK) Biobank. Participants: Sixty-seven thousand three hundred eleven UK residents aged 40 to 70 years recruited between 2006 and 2010 underwent retinal imaging. Methods: Macular-centered OCT images acquired at the baseline visit were segmented for retinal sublayer thicknesses. Very severe periodontitis was ascertained through a touchscreen questionnaire. Linear mixed effects regression modeled the association between very severe periodontitis and retinal sublayer thicknesses, adjusting for age, sex, ethnicity, socioeconomic status, alcohol consumption, smoking status, diabetes mellitus, hypertension, refractive error, and previous cataract surgery. Main Outcome Measures: Photoreceptor layer (PRL) and retinal pigment epithelium-Bruch's membrane (RPE-BM) thicknesses. Results: Among 36 897 participants included in the analysis, 1571 (4.3%) reported very severe periodontitis. Affected individuals were older, lived in areas of greater socioeconomic deprivation, and were more likely to be hypertensive, diabetic, and current smokers (all P < 0.001). On average, those with very severe periodontitis were hyperopic (0.05 ± 2.27 diopters) while those unaffected were myopic (-0.29 ± 2.40 diopters, P < 0.001). Following adjusted analysis, very severe periodontitis was associated with thinner PRL (-0.55 µm, 95% confidence interval [CI], -0.97 to -0.12; P = 0.022) but there was no difference in RPE-BM thickness (0.00 µm, 95% CI, -0.12 to 0.13; P = 0.97). The association between PRL thickness and very severe periodontitis was modified by age (P < 0.001). Stratifying individuals by age, thinner PRL was seen among those aged 60 to 69 years with disease (-1.19 µm, 95% CI, -1.85 to -0.53; P < 0.001) but not among those aged < 60 years. Conclusions: Among those with no known eye disease, very severe periodontitis is statistically associated with a thinner PRL, consistent with incipient AMD. Optimizing oral hygiene may hold additional relevance for people at risk of degenerative retinal disease. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
NPJ Parkinsons Dis ; 10(1): 26, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263165

RESUMO

Retinal thickness may serve as a biomarker in Parkinson's disease (PD). In this prospective longitudinal study, we aimed to determine if PD patients present accelerated thinning rate in the parafoveal ganglion cell-inner plexiform layer (pfGCIPL) and peripapillary retinal nerve fiber layer (pRNFL) compared to controls. Additionally, we evaluated the relationship between retinal neurodegeneration and clinical progression in PD. A cohort of 156 PD patients and 72 controls underwent retinal optical coherence tomography, visual, and cognitive assessments between February 2015 and December 2021 in two Spanish tertiary hospitals. The pfGCIPL thinning rate was twice as high in PD (ß [SE] = -0.58 [0.06]) than in controls (ß [SE] = -0.29 [0.06], p < 0.001). In PD, the progression pattern of pfGCIPL atrophy depended on baseline thickness, with slower thinning rates observed in PD patients with pfGCIPL below 89.8 µm. This result was validated with an external dataset from Moorfields Eye Hospital NHS Foundation Trust (AlzEye study). Slow pfGCIPL progressors, characterized by older at baseline, longer disease duration, and worse cognitive and disease stage scores, showed a threefold increase in the rate of cognitive decline (ß [SE] = -0.45 [0.19] points/year, p = 0.021) compared to faster progressors. Furthermore, temporal sector pRNFL thinning was accelerated in PD (ßtime x group [SE] = -0.67 [0.26] µm/year, p = 0.009), demonstrating a close association with cognitive score changes (ß [SE] = 0.11 [0.05], p = 0.052). This study suggests that a slower pattern of pfGCIPL tissue loss in PD is linked to more rapid cognitive decline, whereas changes in temporal pRNFL could track cognitive deterioration.

3.
Neurology ; 101(16): e1581-e1593, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37604659

RESUMO

BACKGROUND AND OBJECTIVES: Cadaveric studies have shown disease-related neurodegeneration and other morphological abnormalities in the retina of individuals with Parkinson disease (PD); however, it remains unclear whether this can be reliably detected with in vivo imaging. We investigated inner retinal anatomy, measured using optical coherence tomography (OCT), in prevalent PD and subsequently assessed the association of these markers with the development of PD using a prospective research cohort. METHODS: This cross-sectional analysis used data from 2 studies. For the detection of retinal markers in prevalent PD, we used data from AlzEye, a retrospective cohort of 154,830 patients aged 40 years and older attending secondary care ophthalmic hospitals in London, United Kingdom, between 2008 and 2018. For the evaluation of retinal markers in incident PD, we used data from UK Biobank, a prospective population-based cohort where 67,311 volunteers aged 40-69 years were recruited between 2006 and 2010 and underwent retinal imaging. Macular retinal nerve fiber layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), and inner nuclear layer (INL) thicknesses were extracted from fovea-centered OCT. Linear mixed-effects models were fitted to examine the association between prevalent PD and retinal thicknesses. Hazard ratios for the association between time to PD diagnosis and retinal thicknesses were estimated using frailty models. RESULTS: Within the AlzEye cohort, there were 700 individuals with prevalent PD and 105,770 controls (mean age 65.5 ± 13.5 years, 51.7% female). Individuals with prevalent PD had thinner GCIPL (-2.12 µm, 95% CI -3.17 to -1.07, p = 8.2 × 10-5) and INL (-0.99 µm, 95% CI -1.52 to -0.47, p = 2.1 × 10-4). The UK Biobank included 50,405 participants (mean age 56.1 ± 8.2 years, 54.7% female), of whom 53 developed PD at a mean of 2,653 ± 851 days. Thinner GCIPL (hazard ratio [HR] 0.62 per SD increase, 95% CI 0.46-0.84, p = 0.002) and thinner INL (HR 0.70, 95% CI 0.51-0.96, p = 0.026) were also associated with incident PD. DISCUSSION: Individuals with PD have reduced thickness of the INL and GCIPL of the retina. Involvement of these layers several years before clinical presentation highlight a potential role for retinal imaging for at-risk stratification of PD.


Assuntos
Doença de Parkinson , Células Ganglionares da Retina , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/epidemiologia , Tomografia de Coerência Óptica/métodos , Estudos Retrospectivos , Estudos Prospectivos , Estudos Transversais , Fibras Nervosas , Retina/diagnóstico por imagem
4.
JAMA Psychiatry ; 80(5): 478-487, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947045

RESUMO

Importance: The potential association of schizophrenia with distinct retinal changes is of clinical interest but has been challenging to investigate because of a lack of sufficiently large and detailed cohorts. Objective: To investigate the association between retinal biomarkers from multimodal imaging (oculomics) and schizophrenia in a large real-world population. Design, Setting, and Participants: This cross-sectional analysis used data from a retrospective cohort of 154 830 patients 40 years and older from the AlzEye study, which linked ophthalmic data with hospital admission data across England. Patients attended Moorfields Eye Hospital, a secondary care ophthalmic hospital with a principal central site, 4 district hubs, and 5 satellite clinics in and around London, United Kingdom, and had retinal imaging during the study period (January 2008 and April 2018). Data were analyzed from January 2022 to July 2022. Main Outcomes and Measures: Retinovascular and optic nerve indices were computed from color fundus photography. Macular retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (mGC-IPL) thicknesses were extracted from optical coherence tomography. Linear mixed-effects models were used to examine the association between schizophrenia and retinal biomarkers. Results: A total of 485 individuals (747 eyes) with schizophrenia (mean [SD] age, 64.9 years [12.2]; 258 [53.2%] female) and 100 931 individuals (165 400 eyes) without schizophrenia (mean age, 65.9 years [13.7]; 53 253 [52.8%] female) were included after images underwent quality control and potentially confounding conditions were excluded. Individuals with schizophrenia were more likely to have hypertension (407 [83.9%] vs 49 971 [48.0%]) and diabetes (364 [75.1%] vs 28 762 [27.6%]). The schizophrenia group had thinner mGC-IPL (-4.05 µm, 95% CI, -5.40 to -2.69; P = 5.4 × 10-9), which persisted when investigating only patients without diabetes (-3.99 µm; 95% CI, -6.67 to -1.30; P = .004) or just those 55 years and younger (-2.90 µm; 95% CI, -5.55 to -0.24; P = .03). On adjusted analysis, retinal fractal dimension among vascular variables was reduced in individuals with schizophrenia (-0.14 units; 95% CI, -0.22 to -0.05; P = .001), although this was not present when excluding patients with diabetes. Conclusions and Relevance: In this study, patients with schizophrenia had measurable differences in neural and vascular integrity of the retina. Differences in retinal vasculature were mostly secondary to the higher prevalence of diabetes and hypertension in patients with schizophrenia. The role of retinal features as adjunct outcomes in patients with schizophrenia warrants further investigation.


Assuntos
Hipertensão , Esquizofrenia , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Células Ganglionares da Retina , Estudos Retrospectivos , Estudos Transversais , Esquizofrenia/diagnóstico por imagem , Retina/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Imagem Multimodal
5.
bioRxiv ; 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36711974

RESUMO

Nonlinear registration plays a central role in most neuroimage analysis methods and pipelines, such as in tractography-based individual and group-level analysis methods. However, nonlinear registration is a non-trivial task, especially when dealing with tractography data that digitally represent the underlying anatomy of the brain's white matter. Furthermore, such process often changes the structure of the data, causing artifacts that can suppress the underlying anatomical and structural details. In this paper, we introduce BundleWarp, a novel and robust streamline-based nonlinear registration method for the registration of white matter tracts. BundleWarp intelligently warps two bundles while preserving the bundles' crucial topological features. BundleWarp has two main steps. The first step involves the solution of an assignment problem that matches corresponding streamlines from the two bundles (iterLAP step). The second step introduces streamline-specific point-based deformations while keeping the topology of the bundle intact (mlCPD step). We provide comparisons against streamline-based linear registration and image-based nonlinear registration methods. BundleWarp quantitatively and qualitatively outperforms both, and we show that BundleWarp can deform and, at the same time, preserve important characteristics of the original anatomical shape of the bundles. Results are shown on 1,728 pairs of bundle registrations across 27 different bundle types. In addition, we present an application of BundleWarp for quantifying bundle shape differences using the generated deformation fields.

6.
PLoS One ; 17(12): e0278925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520804

RESUMO

Characterizing the effect of age and sex on macular retinal layer thicknesses and foveal pit morphology is crucial to differentiating between natural and disease-related changes. We applied advanced image analysis techniques to optical coherence tomography (OCT) to: 1) enhance the spatial description of age and sex effects, and 2) create a detailed open database of normative retinal layer thickness maps and foveal pit shapes. The maculae of 444 healthy subjects (age range 21-88) were imaged with OCT. Using computational spatial data analysis, thickness maps were obtained for retinal layers and averaged into 400 (20 x 20) sectors. Additionally, the geometry of the foveal pit was radially analyzed by computing the central foveal thickness, rim height, rim radius, and mean slope. The effect of age and sex on these parameters was analyzed with multiple regression mixed-effects models. We observed that the overall age-related decrease of the total retinal thickness (TRT) (-1.1% per 10 years) was mainly driven by the ganglion cell-inner plexiform layer (GCIPL) (-2.4% per 10 years). Both TRT and GCIPL thinning patterns were homogeneous across the macula when using percentual measurements. Although the male retina was 4.1 µm thicker on average, the greatest differences were mainly present for the inner retinal layers in the inner macular ring (up to 4% higher TRT than in the central macula). There was an age-related decrease in the rim height (1.0% per 10 years) and males had a higher rim height, shorter rim radius, and steeper mean slope. Importantly, the radial analysis revealed that these changes are present and relatively uniform across angular directions. These findings demonstrate the capacity of advanced analysis of OCT images to enhance the description of the macula. This, together with the created dataset, could aid the development of more accurate diagnosis models for macular pathologies.


Assuntos
Macula Lutea , Fibras Nervosas , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Criança , Fibras Nervosas/patologia , Células Ganglionares da Retina/patologia , Fóvea Central/diagnóstico por imagem , Macula Lutea/diagnóstico por imagem , Macula Lutea/patologia , Tomografia de Coerência Óptica/métodos
7.
Entropy (Basel) ; 23(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205877

RESUMO

Disentangling the cellular anatomy that gives rise to human visual perception is one of the main challenges of ophthalmology. Of particular interest is the foveal pit, a concave depression located at the center of the retina that captures light from the gaze center. In recent years, there has been a growing interest in studying the morphology of the foveal pit by extracting geometrical features from optical coherence tomography (OCT) images. Despite this, research has devoted little attention to comparing existing approaches for two key methodological steps: the location of the foveal center and the mathematical modelling of the foveal pit. Building upon a dataset of 185 healthy subjects imaged twice, in the present paper the image alignment accuracy of four different foveal center location methods is studied in the first place. Secondly, state-of-the-art foveal pit mathematical models are compared in terms of fitting error, repeatability, and bias. The results indicate the importance of using a robust foveal center location method to align images. Moreover, we show that foveal pit models can improve the agreement between different acquisition protocols. Nevertheless, they can also introduce important biases in the parameter estimates that should be considered.

8.
Front Neurosci ; 15: 708700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34321998

RESUMO

BACKGROUND: Retinal microvascular alterations have been previously described in Parkinson's disease (PD) patients using optical coherence tomography angiography (OCT-A). However, an extensive description of retinal vascular morphological features, their association with PD-related clinical variables and their potential use as diagnostic biomarkers has not been explored. METHODS: We performed a cross-sectional study including 49 PD patients (87 eyes) and 40 controls (73 eyes). Retinal microvasculature was evaluated with Spectralis OCT-A and cognitive status with Montreal Cognitive Assessment. Unified PD Rating Scale and disease duration were recorded in patients. We extracted microvascular parameters from superficial and deep vascular plexuses of the macula, including the area and circularity of foveal avascular zone (FAZ), skeleton density, perfusion density, vessel perimeter index, vessel mean diameter, fractal dimension (FD) and lacunarity using Python and MATLAB. We compared the microvascular parameters between groups and explored their association with thickness of macular layers and clinical outcomes. Data were analyzed with General Estimating Equations (GEE) and adjusted for age, sex, and hypertension. Logistic regression GEE models were fitted to predict diagnosis of PD versus controls from microvascular, demographic, and clinical data. The discrimination ability of models was tested with receiver operating characteristic curves. RESULTS: FAZ area was significantly smaller in patients compared to controls in superficial and deep plexuses, whereas perfusion density, skeleton density, FD and lacunarity of capillaries were increased in the foveal zone of PD. In the parafovea, microvascular parameters of superficial plexus were associated with ganglion cell-inner plexiform layer thickness, but this was mainly driven by PD with mild cognitive impairment. No such associations were observed in controls. FAZ area was negatively associated with cognition in PD (non-adjusted models). Foveal lacunarity, combined with demographic and clinical confounding factors, yielded an outstanding diagnostic accuracy for discriminating PD patients from controls. CONCLUSION: Parkinson's disease patients displayed foveal microvascular alterations causing an enlargement of the vascular bed surrounding FAZ. Parafoveal microvascular alterations were less pronounced but were related to inner retinal layer thinning. Retinal microvascular abnormalities helped discriminating PD from controls. All this supports OCT-A as a potential non-invasive biomarker to reveal vascular pathophysiology and improve diagnostic accuracy in PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA