Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
G3 (Bethesda) ; 14(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38401528

RESUMO

Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20-25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.


Assuntos
Genoma , Melhoramento Vegetal , Humanos , Genômica , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
2.
Plant Methods ; 19(1): 146, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098093

RESUMO

BACKGROUND: Grapevine berries undergo asynchronous growth and ripening dynamics within the same bunch. Due to the lack of efficient methods to perform sequential non-destructive measurements on a representative number of individual berries, the genetic and environmental origins of this heterogeneity, remain nearly unknown. To address these limitations, we propose a method to track the growth and coloration kinetics of individual berries on time-lapse images of grapevine bunches. RESULTS: First, a deep-learning approach is used to detect berries with at least 50 ± 10% of visible contours, and infer the shape they would have in the absence of occlusions. Second, a tracking algorithm was developed to assign a common label to shapes representing the same berry along the time-series. Training and validation of the methods were performed on challenging image datasets acquired in a robotised high-throughput phenotyping platform. Berries were detected on various genotypes with a F1-score of 91.8%, and segmented with a mean absolute error of 4.1% on their area. Tracking allowed to label and retrieve the temporal identity of more than half of the segmented berries, with an accuracy of 98.1%. This method was used to extract individual growth and colour kinetics of various berries from the same bunch, allowing us to propose the first statistically relevant analysis of berry ripening kinetics, with a time resolution lower than one day. CONCLUSIONS: We successfully developed a fully-automated open-source method to detect, segment and track overlapping berries in time-series of grapevine bunch images acquired in laboratory conditions. This makes it possible to quantify fine aspects of individual berry development, and to characterise the asynchrony within the bunch. The interest of such analysis was illustrated here for one cultivar, but the method has the potential to be applied in a high throughput phenotyping context. This opens the way for revisiting the genetic and environmental variations of the ripening dynamics. Such variations could be considered both from the point of view of fruit development and the phenological structure of the population, which would constitute a paradigm shift.

3.
Ann Bot ; 130(2): 159-171, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700109

RESUMO

BACKGROUND AND AIMS: Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS: Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS: The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.


Assuntos
Proantocianidinas , Vitaceae , Vitis , Catequina/análogos & derivados , Frutas , Filogenia , Folhas de Planta , Proantocianidinas/análise , Taninos/análise , Vitis/genética
4.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485948

RESUMO

To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
5.
Hortic Res ; 8(1): 193, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465746

RESUMO

Transcriptomic changes at the cessation of sugar accumulation in the pericarp of Vitis vinifera were addressed on single berries re-synchronised according to their individual growth patterns. The net rates of water, sugars and K+ accumulation inferred from individual growth and solute concentration confirmed that these inflows stopped simultaneously in the ripe berry, while the small amount of malic acid remaining at this stage was still being oxidised at low rate. Re-synchronised individual berries displayed negligible variations in gene expression among triplicates. RNA-seq studies revealed sharp reprogramming of cell-wall enzymes and structural proteins at the stop of phloem unloading, associated with an 80% repression of multiple sugar transporters and aquaporins on the plasma or tonoplast membranes, with the noticeable exception of H+/sugar symporters, which were rather weakly and constitutively expressed. This was verified in three genotypes placed in contrasted thermo-hydric conditions. The prevalence of SWEET suggests that electrogenic transporters would play a minor role on the plasma membranes of SE/CC complex and the one of the flesh, while sucrose/H+ exchangers dominate on its tonoplast. Cis-regulatory elements present in their promoters allowed to sort these transporters in different groups, also including specific TIPs and PIPs paralogs, and cohorts of cell wall-related genes. Together with simple thermodynamic considerations, these results lead to propose that H+/sugar exchangers at the tonoplast, associated with a considerably acidic vacuolar pH, may exhaust cytosolic sugars in the flesh and alleviate the need for supplementary energisation of sugar transport at the plasma membrane.

6.
Sci Rep ; 11(1): 8114, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854120

RESUMO

Ozonated water has become an innovative, environmentally friendly tool for controlling the development of fungal diseases in the vineyard or during grape postharvest conservation. However, little information is currently available on the effects of ozonated water sprayings on the grapevine physiology and metabolism. Using the microvine model, we studied the transcriptomic response of leaf and fruit organs to this treatment. The response to ozone was observed to be organ and developmental stage-dependent, with a decrease of the number of DEGs (differentially expressed genes) in the fruit from the onset of ripening to later stages. The most highly up-regulated gene families were heat-shock proteins and chaperones. Other up-regulated genes were involved in oxidative stress homeostasis such as those of the ascorbate-glutathione cycle and glutathione S-transferases. In contrast, genes related to cell wall development and secondary metabolites (carotenoids, terpenoids, phenylpropanoids / flavonoids) were generally down-regulated after ozone treatment, mainly in the early stage of fruit ripening. This down-regulation may indicate a possible carbon competition favouring the re-establishment and maintenance of the redox homeostasis rather than the synthesis of secondary metabolites at the beginning of ripening, the most ozone responsive developmental stage.


Assuntos
Antioxidantes/metabolismo , Ozônio/farmacologia , Transcriptoma/efeitos dos fármacos , Vitis/metabolismo , Carotenoides/metabolismo , Regulação para Baixo/efeitos dos fármacos , Frutas/química , Frutas/genética , Frutas/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Regulação para Cima/efeitos dos fármacos , Vitis/química , Vitis/genética
7.
Front Plant Sci ; 11: 01175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072139

RESUMO

The selection of grapevine varieties is considered to be the smartest strategy for adapting the viticulture to climate warming. Present knowledge of the diversity of grape solutes known to be influenced by temperature is too limited to perform genetic improvement strategies. This study aimed to characterize the diversity for major cations (K+, Mg2+, Ca2+, NH4 +) of the Vitis vinifera fruit and their effect on acidity. Two developmental stages were targeted: the end of green growth, when organic acids reach a maximum, and the physiological ripe stage defined by the stopping of solutes and water import at the maximum volume of the berry. Twelve varieties and 21 microvines from the same segregating population were selected from preliminary phenotyping. The concentration of cations depended on the stage of fruit development, the genotype and the environment with GxE effects. In the ripe grape, K+ concentration varied from 28 to 57 mmol.L-1 with other cations being less concentrated. Combined with the variation in organic acids, cation concentration diversity resulted in titratable acidity of the ripe fruit ranging from 38 to 215 meq.L-1. These results open new perspectives for the selection of varieties to mitigate the adverse effects of climate warming on grape quality.

8.
Front Plant Sci ; 9: 455, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765379

RESUMO

The wine industry is facing critical issues due to climate changes since production is established on very tight Genotype × Environment interaction bases. While, some cultivation practices may reduce adverse effects of abiotic stresses on the vines, e.g., the use of irrigation to mitigate drought, the deleterious impacts of warming on fruit development are difficult to manage. Elevated temperature alters grapevine fruit growth and composition, with a critical increase of the sugars/organic acids ratio. Select grapes with improved metabolite balances to offset high temperature effects is a valuable option to sustain viticulture. Unfortunately, the lack of knowledge about the genetic diversity for fruit traits impacted by temperature impairs the design of breeding programs. This study aimed to assess the variation in berry volume, main sugars and organic acids amounts in genetic resources. Fruit phenotyping focused on two critical stages of development: the end of green lag phase when organic acidity reaches its maximum, and the ripe stage when sugar unloading and water uptake stop. For that purpose, we studied a panel of 33 genotypes, including 12 grapevine varieties and 21 microvine offspring. To determine the date of sampling for each critical stage, fruit texture and growth were carefully monitored. Analyses at both stages revealed large phenotypic variation for malic and tartaric acids, as well as for sugars and berry size. At ripe stage, fruit fresh weight ranged from 1.04 to 5.25 g and sugar concentration from 751 to 1353 mmol.L-1. The content in organic acids varied both in quantity (from 80 to 361 meq.L-1) and in composition, with malic to tartaric acid ratio ranging from 0.13 to 3.62. At the inter-genotypic level, data showed no link between berry growth and osmoticum accumulation per fruit unit, suggesting that berry water uptake is not dependent only on fruit osmotic potential. Diversity among varieties for berry size, sugar accumulation and malic to tartaric acid ratio could be exploited through cross-breeding. This provides interesting prospects for improving grapevine to mitigate some adverse effects of climate warming on grapevine fruit volume and quality.

9.
J Agric Food Chem ; 65(13): 2895-2901, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28291348

RESUMO

Condensed tannins (also called proanthocyanidins) present in strategic tissues of fruits (outer pericarp and vascular bundles) were known as short polymers of flavan-3-ols. A pretreatment of the plant material (fruits from the grapevine, persimmon) with buffered ascorbic acid and Triton X-100 followed by acetone extraction provided native white fully depolymerizable tannins. Tannins are usually extracted with aqueous solvents and further purified, although artifactual oxidations occur, altering their physicochemical characteristics. Compared to artifactually oxidized tannins prepared according to standard protocols, white tannins (also called leukotannins) exhibit a higher degree of polymerization and a far lower polydispersity.


Assuntos
Frutas/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Vitis/química , Espectrometria de Massas , Estrutura Molecular
10.
BMC Plant Biol ; 16(1): 164, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27439426

RESUMO

BACKGROUND: Fruit composition at harvest is strongly dependent on the temperature during the grapevine developmental cycle. This raises serious concerns regarding the sustainability of viticulture and the socio-economic repercussions of global warming for many regions where the most heat-tolerant varieties are already cultivated. Despite recent progress, the direct and indirect effects of temperature on fruit development are far from being understood. Experimental limitations such as fluctuating environmental conditions, intra-cluster heterogeneity and the annual reproductive cycle introduce unquantifiable biases for gene expression and physiological studies with grapevine. In the present study, DRCF grapevine mutants (microvine) were grown under several temperature regimes in duly-controlled environmental conditions. A singly berry selection increased the accuracy of fruit phenotyping and subsequent gene expression analyses. The physiological and transcriptomic responses of five key stages sampled simultaneously at day and nighttime were studied by RNA-seq analysis. RESULTS: A total of 674 millions reads were sequenced from all experiments. Analysis of differential expression yielded in a total of 10 788 transcripts modulated by temperature. An acceleration of green berry development under higher temperature was correlated with the induction of several candidate genes linked to cell expansion. High temperatures impaired tannin synthesis and degree of galloylation at the transcriptomic levels. The timing of malate breakdown was delayed to mid-ripening in transgressively cool conditions, revealing unsuspected plasticity of berry primary metabolism. Specific ATPases and malate transporters displayed development and temperature-dependent expression patterns, besides less marked but significant regulation of other genes in the malate pathway. CONCLUSION: The present study represents, to our knowledge the first abiotic stress study performed on a fleshy fruits model using RNA-seq for transcriptomic analysis. It confirms that a careful stage selection and a rigorous control of environmental conditions are needed to address the long-term plasticity of berry development with respect to temperature. Original results revealed temperature-dependent regulation of key metabolic processes in the elaboration of berry composition. Malate breakdown no longer appears as an integral part of the veraison program, but as possibly triggered by an imbalance in cytoplasmic sugar, when efficient vacuolar storage is set on with ripening, in usual temperature conditions. Furthermore, variations in heat shock responsive genes that will be very valuable for further research on temperature adaptation of plants have been evidenced.


Assuntos
Ácidos/metabolismo , Frutas/crescimento & desenvolvimento , Malatos/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Plantas/metabolismo , Temperatura , Vitis/genética , Vitis/crescimento & desenvolvimento
11.
BMC Plant Biol ; 15: 205, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26283631

RESUMO

BACKGROUND: The increasing temperature associated with climate change impacts grapevine phenology and development with critical effects on grape yield and composition. Plant breeding has the potential to deliver new cultivars with stable yield and quality under warmer climate conditions, but this requires the identification of stable genetic determinants. This study tested the potentialities of the microvine to boost genetics in grapevine. A mapping population of 129 microvines derived from Picovine x Ugni Blanc flb, was genotyped with the Illumina® 18 K SNP (Single Nucleotide Polymorphism) chip. Forty-three vegetative and reproductive traits were phenotyped outdoors over four cropping cycles, and a subset of 22 traits over two cropping cycles in growth rooms with two contrasted temperatures, in order to map stable QTLs (Quantitative Trait Loci). RESULTS: Ten stable QTLs for berry development and quality or leaf area were identified on the parental maps. A new major QTL explaining up to 44 % of total variance of berry weight was identified on chromosome 7 in Ugni Blanc flb, and co-localized with QTLs for seed number (up to 76 % total variance), major berry acids at green lag phase (up to 35 %), and other yield components (up to 25 %). In addition, a minor QTL for leaf area was found on chromosome 4 of the same parent. In contrast, only minor QTLs for berry acidity and leaf area could be found as moderately stable in Picovine. None of the transporters recently identified as mutated in low acidity apples or Cucurbits were included in the several hundreds of candidate genes underlying the above berry QTLs, which could be reduced to a few dozen candidate genes when a priori pertinent biological functions and organ specific expression were considered. CONCLUSIONS: This study combining the use of microvine and a high throughput genotyping technology was innovative for grapevine genetics. It allowed the identification of 10 stable QTLs, including the first berry acidity QTLs reported so far in a Vitis vinifera intra-specific cross. Robustness of a set of QTLs was assessed with respect to temperature variation.


Assuntos
Mudança Climática , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Vitis/fisiologia , Frutas/genética , Frutas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reprodução , Sementes/genética , Sementes/metabolismo , Temperatura , Vitis/genética , Vitis/metabolismo
12.
Protoplasma ; 251(6): 1387-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24692039

RESUMO

Most Tracheophyta synthesize-condensed tannins (also called proanthocyanidins), polymers of catechins, which appear in the vacuole as uniformly stained deposits-termed tannin accretions-lining the inner face of the tonoplast. A large body of evidence argues that tannins are formed in recently described thylakoid-derived organelles, the tannosomes, which are packed in membrane-bound shuttles (Brillouet et al. 2013); it has been suggested that shuttles agglomerate into tannin accretions. The aim of the study was to describe the ontogenesis of tannin accretions in members of the Tracheophyta. For this purpose, fresh specimens of young tissues from diverse Tracheophyta were cut, gently lacerated in paraformaldehyde, and examined using light, epifluorescence, confocal, and transmission electron microscopy. Fresh samples were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Our observations showed that vacuolar accretions (1 → 40 µm), that constitute the typical form of tannin storage in tannin-producing Tracheophyta, are formed by agglomeration (not fusion) of shuttles containing various proportions of chlorophylls and tannins.


Assuntos
Clorofila/metabolismo , Taninos/metabolismo , Traqueófitas/metabolismo , Vacúolos/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/ultraestrutura , Microscopia de Fluorescência , Especificidade de Órgãos , Traqueófitas/citologia , Traqueófitas/ultraestrutura , Vacúolos/ultraestrutura
13.
BMC Plant Biol ; 14: 108, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24774299

RESUMO

BACKGROUND: Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. RESULTS: Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. CONCLUSIONS: This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.


Assuntos
Ritmo Circadiano/genética , Frutas/crescimento & desenvolvimento , Frutas/genética , Temperatura Alta , Estresse Fisiológico/genética , Transcriptoma/genética , Vitis/genética , Antocianinas/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Análise por Conglomerados , Bases de Dados Genéticas , Regulação para Baixo/genética , Frutas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Malato Desidrogenase/metabolismo , Proteínas Mitocondriais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Prolina/biossíntese , Propanóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulon/genética , Reprodutibilidade dos Testes , Transcrição Gênica , Regulação para Cima/genética , Vitis/crescimento & desenvolvimento , Vitis/fisiologia
14.
J Agric Food Chem ; 62(15): 3384-9, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24617570

RESUMO

A rapid and sensitive method is presented for the determination of proline in grape berries. Following acidification with formic acid, proline is derivatized by heating at 100 °C for 15 min with 3% ninhydrin in dimethyl sulfoxide, and the absorbance, which is stable for at least 60 min, is read at 520 nm. The method was statistically validated in the concentration range from 2.5 to 15 mg/L, giving a repeatability and intermediate precision of generally <3%; linearity was determined using the lack of fit test. Results obtained with this method concurred (r = 0.99) with those obtained for the same samples on an amino acid analyzer. In terms of sample preparation, a simple dilution (5-20-fold) is required, and sugars, primary amino acids, and anthocyanins were demonstrated not to interfere, as the latter are bleached by ninhydrin under the experimental conditions. The method was applied to the study of proline accumulation in the fruits of microvines grown in phytotrons, and it was established that proline accumulation and concentrations closely resemble those of field-grown macrovines.


Assuntos
Técnicas de Química Analítica/métodos , Frutas/química , Prolina/análise , Vitis/química
15.
PLoS One ; 9(2): e88844, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551177

RESUMO

Diurnal changes in gene expression occur in all living organisms and have been studied on model plants such as Arabidopsis thaliana. To our knowledge the impact of the nycthemeral cycle on the genetic program of fleshly fruit development has been hitherto overlooked. In order to circumvent environmental changes throughout fruit development, young and ripening berries were sampled simultaneously on continuously flowering microvines acclimated to controlled circadian light and temperature changes. Gene expression profiles along fruit development were monitored during both day and night with whole genome microarrays (Nimblegen® vitis 12x), yielding a total number of 9273 developmentally modulated probesets. All day-detected transcripts were modulated at night, whereas 1843 genes were night-specific. Very similar developmental patterns of gene expression were observed using independent hierarchical clustering of day and night data, whereas functional categories of allocated transcripts varied according to time of day. Many transcripts within pathways, known to be up-regulated during ripening, in particular those linked to secondary metabolism exhibited a clearer developmental regulation at night than during the day. Functional enrichment analysis also indicated that diurnally modulated genes considerably varied during fruit development, with a shift from cellular organization and photosynthesis in green berries to secondary metabolism and stress-related genes in ripening berries. These results reveal critical changes in gene expression during night development that differ from daytime development, which have not been observed in other transcriptomic studies on fruit development thus far.


Assuntos
Relógios Circadianos/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Vitis/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fotoperíodo , Transcrição Gênica , Vitis/crescimento & desenvolvimento
16.
BMC Plant Biol ; 13: 217, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24350702

RESUMO

BACKGROUND: In grapevine, as in other fruit crops, fruit size and seed content are key components of yield and quality; however, very few Quantitative Trait Loci (QTLs) for berry weight and seed content (number, weight, and dry matter percentage) have been discovered so far. To identify new stable QTLs for marker-assisted selection and candidate gene identification, we performed simultaneous QTL detection in four mapping populations (seeded or seedless) with various genetic backgrounds. RESULTS: For berry weight, we identified five new QTLs, on linkage groups (LGs) 1, 8, 11, 17 and 18, in addition to the known major QTL on LG 18. The QTL with the largest effect explained up to 31% of total variance and was found in two genetically distant populations on LG 17, where it colocalized with a published putative domestication locus. For seed traits, besides the major QTLs on LG 18 previously reported, we found four new QTLs explaining up to 51% of total variance, on LGs 4, 5, 12 and 14. The previously published QTL for seed number on LG 2 was found related in fact to sex. We found colocalizations between seed and berry weight QTLs only for the major QTL on LG 18 in a seedless background, and on LGs 1 and 13 in a seeded background. Candidate genes belonging to the cell number regulator CNR or cytochrome P450 families were found under the berry weight QTLs on LGs 1, 8, and 17. The involvement of these gene families in fruit weight was first described in tomato using a QTL-cloning approach. Several other interesting candidate genes related to cell wall modifications, water import, auxin and ethylene signalling, transcription control, or organ identity were also found under berry weight QTLs. CONCLUSION: We discovered a total of nine new QTLs for berry weight or seed traits in grapevine, thereby increasing more than twofold the number of reliable QTLs for these traits available for marker assisted selection or candidate gene studies. The lack of colocalization between berry and seed QTLs suggests that these traits may be partly dissociated.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Vitis/crescimento & desenvolvimento , Vitis/genética , Mapeamento Cromossômico , Estudos de Associação Genética , Padrões de Herança/genética , Escore Lod , Tamanho do Órgão/genética , Fenótipo , Característica Quantitativa Herdável
17.
Ann Bot ; 112(6): 1003-14, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24026439

RESUMO

BACKGROUND AND AIMS: Condensed tannins (also called proanthocyanidins) are widespread polymers of catechins and are essential for the defence mechanisms of vascular plants (Tracheophyta). A large body of evidence argues for the synthesis of monomeric epicatechin on the cytosolic face of the endoplasmic reticulum and its transport to the vacuole, although the site of its polymerization into tannins remains to be elucidated. The aim of the study was to re-examine the cellular frame of tannin polymerization in various representatives of the Tracheophyta. METHODS: Light microscopy epifluorescence, confocal microscopy, transmission electron microscopy (TEM), chemical analysis of tannins following cell fractionation, and immunocytochemistry were used as independent methods on tannin-rich samples from various organs from Cycadophyta, Ginkgophyta, Equisetophyta, Pteridophyta, Coniferophyta and Magnoliophyta. Tissues were fixed in a caffeine-glutaraldehyde mixture and examined by TEM. Other fresh samples were incubated with primary antibodies against proteins from both chloroplastic envelopes and a thylakoidal chlorophyll-carrying protein; they were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Coupled spectral analyses of chlorophyll and tannins were carried out by confocal microscopy on fresh tissues and tannin-rich accretions obtained through cell fractionation; chemical analyses of tannins and chlorophylls were also performed on the accretions. KEY RESULTS AND CONCLUSIONS: The presence of the three different chloroplast membranes inside vacuolar accretions that constitute the typical form of tannin storage in vascular plants was established in fresh tissues as well as in purified organelles, using several independent methods. Tannins are polymerized in a new chloroplast-derived organelle, the tannosome. These are formed by pearling of the thylakoids into 30 nm spheres, which are then encapsulated in a tannosome shuttle formed by budding from the chloroplast and bound by a membrane resulting from the fusion of both chloroplast envelopes. The shuttle conveys numerous tannosomes through the cytoplasm towards the vacuole in which it is then incorporated by invagination of the tonoplast. Finally, shuttles bound by a portion of tonoplast aggregate into tannin accretions which are stored in the vacuole. Polymerization of tannins occurs inside the tannosome regardless of the compartment being crossed. A complete sequence of events apparently valid in all studied Tracheophyta is described.


Assuntos
Organelas/ultraestrutura , Proantocianidinas/metabolismo , Traqueófitas/metabolismo , Animais , Catequina/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Clorofila/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Cromatografia Líquida de Alta Pressão , Ebenaceae/química , Ebenaceae/metabolismo , Ebenaceae/ultraestrutura , Frutas/química , Frutas/metabolismo , Frutas/ultraestrutura , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Ginkgo biloba/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Organelas/química , Organelas/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Polimerização , Proantocianidinas/química , Proantocianidinas/isolamento & purificação , Traqueófitas/química , Traqueófitas/ultraestrutura , Vacúolos/química , Vacúolos/metabolismo , Vacúolos/ultraestrutura , Vitis/química , Vitis/metabolismo , Vitis/ultraestrutura
18.
Plant Physiol ; 149(2): 1028-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19098092

RESUMO

Grapevine (Vitis vinifera) proanthocyanidins contribute to plant defense mechanisms against biotic stress and also play a critical role in organoleptic properties of wine. In grapevine berry, these compounds are mainly accumulated in exocarps and seeds in the very early stages of development. A previous study has already identified VvMybPA1 as the first transcription factor involved in the regulation of the proanthocyanidin pathway during seed development in grapevine. A novel Myb factor, VvMybPA2, which is described in this study, is in contrast mainly expressed in the exocarp of young berries and in the leaves. This transcription factor shows very high protein sequence homology with other plant Myb factors, which regulate flavonoid biosynthesis. Ectopic expression of either VvMybPA1 or VvMybPA2 in grapevine hairy roots induced qualitative and quantitative changes of the proanthocyanidin profiles. High-throughput transcriptomic analyses of transformed grapevine organs identified a large set of putative targets of the VvMybPA1 and VvMybPA2 transcription factors. Both genes significantly activated enzymes of the flavonoid pathway, including anthocyanidin reductase and leucoanthocyanidin reductase 1, the specific terminal steps in the biosynthesis of epicatechin and catechin, respectively, but not leucoanthocyanidin reductase 2. The functional annotation of the genes whose expression was modified revealed putative new actors of the proanthocyanidin pathway, such as glucosyltransferases and transporters.


Assuntos
Antiprotozoários/metabolismo , Genes myb , Proteínas de Plantas/genética , Proantocianidinas/biossíntese , Fatores de Transcrição/genética , Vitis/genética , Antioxidantes/metabolismo , Sequência Consenso , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Transcrição Gênica , Vitis/metabolismo
19.
Plant Mol Biol ; 69(6): 633-48, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19096760

RESUMO

The colour of the red wine is essentially due to the release of anthocyanins from the red skin of grape berries during the process of wine making. Anthocyanins are synthesized during ripening of the berries under the control of VvMYBA1 transcription factor that controls the expression of UFGT. In order to identify the whole set of downstream regulated genes, we targeted constitutive ectopic expression of VlmybA1-2 into grapevine hairy roots and plants. The ectopic expression of VlmybA1-2 triggered de novo production and storage of anthocyanins in all transgenic vegetative organs, leading to a very intense red coloration, and did not interfere with proanthocyanidin (PA) biosynthesis. The ectopic red pigmentation was due to the accumulation of anthocyanins in vacuoles and anthocyanin vacuolar inclusion (AVIs) in all organs but only in specific tissues. A transcriptomic analysis using a 14 K oligoarray revealed that the ectopic expression of VlmybA1-2 activated only few genes, most of which are involved in both PA and anthocyanin biosynthesis, while the expression of BAN and LAR (two specific genes of the PA biosynthesis pathway) was unaffected. Among these, 4 genes emerged given the amplitude of their up-regulation, quantitatively similar to VlmybA1-2 itself. In addition to the previously described UFGT, this set comprised an isogen of GST, an O-methyltransferase, both of which are supposed to play a role in the anthocyanin biosynthesis pathway, as well as a candidate gene putatively involved in the vacuolar anthocyanin transport in grapevine (anthoMATE). Together, these results suggest that MybA1 activates the last steps of anthocyanin synthesis and transport through the regulation of a narrow, specific spectrum of genes regulated as a cluster.


Assuntos
Antocianinas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Vitis/metabolismo
20.
Protein J ; 27(4): 258-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18459038

RESUMO

A beta-glucosidase enzyme activity was enriched from skins of ripe grape berry by cell wall fractionation, hydrophobic interaction and cation-exchange chromatographies. This enriched enzyme extract contained several beta-glycosidase activities hydrolyzing a wide range of synthetic and natural monoglycosides and diglycosides, as well as a beta-fructosidase activity. The enzyme extract was further characterized by two-dimensional gel electrophoresis coupled to peptide mass fingerprinting of eight spots using MALDI-TOF mass spectrometry. No beta-glucosidase but a beta-fructosidase associated to the relevant spot at 66 kDa/pI 5.1 was identified. Taken together all results issued from the biochemical characterization, the substrate specificity and the mass spectrometry-based identification of this enriched enzyme extract, we propose that this protein could be a specific beta-fructosidase isoform associated with a broad spectrum of beta-glycosidase activities in grape berry skin and involved in cell wall modifications which occur during the ripening-induced thickness of the grape.


Assuntos
Vitis/enzimologia , beta-Frutofuranosidase/isolamento & purificação , Parede Celular/enzimologia , Eletroforese em Gel Bidimensional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA