Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 21(5): e3002110, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155705

RESUMO

Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Camundongos , Toxoplasma/genética , Miosinas , Mutação , Proteínas de Protozoários/genética
2.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011689

RESUMO

Toxoplasma gondii is a widespread apicomplexan parasite that causes severe disease in immunocompromised individuals and the developing fetus. Like other apicomplexans, T. gondii uses an unusual form of substrate-dependent gliding motility to invade cells of its hosts and to disseminate throughout the body during infection. It is well established that a myosin motor consisting of a class XIVa heavy chain (TgMyoA) and two light chains (TgMLC1 and TgELC1/2) plays an important role in parasite motility. The ability of the motor to generate force at the parasite periphery is thought to be reliant upon its anchoring and immobilization within a peripheral membrane-bound compartment, the inner membrane complex (IMC). The motor does not insert into the IMC directly; rather, this interaction is believed to be mediated by the binding of TgMLC1 to the IMC-anchored protein, TgGAP45. Therefore, the binding of TgMLC1 to TgGAP45 is considered a key element in the force transduction machinery of the parasite. TgMLC1 is palmitoylated, and we show here that palmitoylation occurs on two N-terminal cysteine residues, C8 and C11. Mutations that block TgMLC1 palmitoylation completely abrogate the binding of TgMLC1 to TgGAP45. Surprisingly, the loss of TgMLC1 binding to TgGAP45 in these mutant parasites has little effect on their ability to initiate or sustain movement. These results question a key tenet of the current model of apicomplexan motility and suggest that our understanding of gliding motility in this important group of human and animal pathogens is not yet complete.IMPORTANCE Gliding motility plays a central role in the life cycle of T. gondii and other apicomplexan parasites. The myosin motor thought to power motility is essential for virulence but distinctly different from the myosins found in humans. Consequently, an understanding of the mechanism(s) underlying parasite motility and the role played by this unusual myosin may reveal points of vulnerability that can be targeted for disease prevention or treatment. We show here that mutations that uncouple the motor from what is thought to be a key structural component of the motility machinery have little impact on parasite motility. This finding runs counter to predictions of the current, widely held "linear motor" model of motility, highlighting the need for further studies to fully understand how apicomplexan parasites generate the forces necessary to move into, out of, and between cells of the hosts they infect.


Assuntos
Lipoilação , Proteínas de Membrana/antagonistas & inibidores , Proteínas Motores Moleculares/química , Cadeias Leves de Miosina/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Toxoplasma/metabolismo , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Interações Hospedeiro-Parasita/fisiologia , Humanos , Estágios do Ciclo de Vida , Masculino , Proteínas de Membrana/genética , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Movimento , Mutação , Cadeias Leves de Miosina/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética
3.
PLoS One ; 10(7): e0134098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222047

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are known to release from almost all Gram-negative bacteria during normal growth. OMVs carry different biologically active toxins and enzymes into the surrounding environment. We suggest that OMVs may therefore be able to transport bacterial proteases into the target host cells. We present here an analysis of the Vibrio cholerae OMV-associated protease PrtV. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we demonstrated that PrtV was secreted from the wild type V. cholerae strain C6706 via the type II secretion system in association with OMVs. By immunoblotting and electron microscopic analysis using immunogold labeling, the association of PrtV with OMVs was examined. We demonstrated that OMV-associated PrtV was biologically active by showing altered morphology and detachment of cells when the human ileocecum carcinoma (HCT8) cells were treated with OMVs from the wild type V. cholerae strain C6706 whereas cells treated with OMVs from the prtV isogenic mutant showed no morphological changes. Furthermore, OMV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37. CONCLUSION/SIGNIFICANCE: Our findings suggest that OMVs released from V. cholerae can deliver a processed, biologically active form of PrtV that contributes to bacterial interactions with target host cells.


Assuntos
Membrana Celular/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Vibrio cholerae/citologia , Vibrio cholerae/enzimologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular Tumoral , Farmacorresistência Bacteriana , Espaço Extracelular/metabolismo , Humanos , Transporte Proteico , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Catelicidinas
4.
PLoS One ; 9(9): e106731, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187967

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) released from Gram-negative bacteria can serve as vehicles for the translocation of virulence factors. Vibrio cholerae produce OMVs but their putative role in translocation of effectors involved in pathogenesis has not been well elucidated. The V. cholerae cytolysin (VCC), is a pore-forming toxin that lyses target eukaryotic cells by forming transmembrane oligomeric ß-barrel channels. It is considered a potent toxin that contributes to V. cholerae pathogenesis. The mechanisms involved in the secretion and delivery of the VCC have not been extensively studied. METHODOLOGY/PRINCIPAL FINDINGS: OMVs from V. cholerae strains were isolated and purified using a differential centrifugation procedure and Optiprep centrifugation. The ultrastructure and the contents of OMVs were examined under the electron microscope and by immunoblot analyses respectively. We demonstrated that VCC from V. cholerae strain V:5/04 was secreted in association with OMVs and the release of VCC via OMVs is a common feature among V. cholerae strains. The biological activity of OMV-associated VCC was investigated using contact hemolytic assay and epithelial cell cytotoxicity test. It showed toxic activity on both red blood cells and epithelial cells. Our results indicate that the OMVs architecture might play a role in stability of VCC and thereby can enhance its biological activities in comparison with the free secreted VCC. Furthermore, we tested the role of OMV-associated VCC in host cell autophagy signalling using confocal microscopy and immunoblot analysis. We observed that OMV-associated VCC triggered an autophagy response in the target cell and our findings demonstrated for the first time that autophagy may operate as a cellular defence mechanism against an OMV-associated bacterial virulence factor. CONCLUSION/SIGNIFICANCE: Biological assays of OMVs from the V. cholerae strain V:5/04 demonstrated that OMV-associated VCC is indeed biologically active and induces toxicity on mammalian cells and furthermore can induce autophagy.


Assuntos
Proteínas de Bactérias/toxicidade , Citotoxinas/toxicidade , Vesículas Extracelulares/química , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Vibrio cholerae/química , Fatores de Virulência/toxicidade , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Citotoxinas/biossíntese , Citotoxinas/isolamento & purificação , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Proteínas Citotóxicas Formadoras de Poros/biossíntese , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/toxicidade , Vibrio cholerae/metabolismo , Vibrio cholerae/patogenicidade , Fatores de Virulência/biossíntese , Fatores de Virulência/isolamento & purificação
5.
PLoS One ; 5(9)2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20927349

RESUMO

BACKGROUND: Two well-characterized proteases secreted by Vibrio cholerae O1 strains are hemagglutinin protease (HAP) and V. cholerae protease (PrtV). The hapA and prtV knock out mutant, V. cholerae O1 strain CHA6.8ΔprtV, still retains residual protease activity. We initiated this study to characterize the protease present in CHA6.8ΔprtV strain and study its role in pathogenesis in rabbit ileal loop model (RIL). METHODOLOGY/PRINCIPAL FINDINGS: We partially purified the residual protease secreted by strain CHA6.8ΔprtV from culture supernatant by anion-exchange chromatography. The major protein band in native PAGE was identified by MS peptide mapping and sequence analysis showed homology with a 59-kDa trypsin-like serine protease encoded by VC1649. The protease activity was partially inhibited by 25 mM PMSF and 10 mM EDTA and completely inhibited by EDTA and PMSF together. RIL assay with culture supernatants of strains C6709 (FA ratio 1.1+/-0.3 n = 3), CHA6.8 (FA ratio 1.08+/-0.2 n = 3), CHA6.8ΔprtV (FA ratio 1.02+/-0.2 n = 3) and partially purified serine protease from CHA6.8ΔprtV (FA ratio 1.2+/-0.3 n = 3) induced fluid accumulation and histopathological studies on rabbit ileum showed destruction of the villus structure with hemorrhage in all layers of the mucosa. RIL assay with culture supernatant of CHA6.8ΔprtVΔVC1649 strain (FA ratio 0.11+/-0.005 n = 3) and with protease incubated with PMSF and EDTA (FA ratio 0.3+/-0.05 n = 3) induced a significantly reduced FA ratio with almost complete normal villus structure. CONCLUSION: Our results show the presence of a novel 59-kDa serine protease in a ΔhapAΔprtV V. cholerae O1 strain and its role in hemorrhagic response in RIL model.


Assuntos
Cólera/patologia , Íleo/patologia , Metaloendopeptidases/deficiência , Peptídeo Hidrolases/deficiência , Serina Proteases/metabolismo , Vibrio cholerae O1/enzimologia , Sequência de Aminoácidos , Animais , Cólera/microbiologia , Modelos Animais de Doenças , Deleção de Genes , Hemorragia , Humanos , Íleo/microbiologia , Metaloendopeptidases/genética , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , Coelhos , Serina Proteases/química , Serina Proteases/genética , Vibrio cholerae O1/química , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidade , Virulência
6.
FEBS J ; 275(12): 3167-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18479458

RESUMO

The Vibrio metalloprotease PrtV was purified from the culture supernatant of a Vibrio cholerae derivative that is deficient in several other secreted peptidases, including the otherwise abundant hemagglutinin/protease HapA. The PrtV is synthesized as a 102 kDa protein, but undergoes several N- and C-terminal processing steps during V. cholerae envelope translocation and prolonged incubation. Purified V. cholerae PrtV protease forms of 81 or 73 kDa were stabilized by calcium ions. Removal of calcium resulted in further rapid autoproteolysis. The two major products of autoproteolysis of the PrtV protease were approximately 37 and 18 kDa and could not be separated under non-denaturing conditions, indicating they are interacting domains. In an assay using cultured cells of the human intestinal cell line HCT8, the PrtV protein showed a cytotoxic effect leading to cell death. Using human blood plasma as a source of potential substrates of mammalian origin for the PrtV protease, we found that the extracellular matrix components fibronectin and fibrinogen were degraded by the enzyme. Additional tests with individual protein substrates revealed that plasminogen was also a possible target for the PrtV protease.


Assuntos
Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Estabilidade Enzimática , Humanos , Metaloproteases/química , Metaloproteases/toxicidade , Peptídeo Hidrolases/química , Peptídeo Hidrolases/toxicidade , Inibidores de Proteases/farmacologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA