Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
J Thromb Haemost ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969303

RESUMO

Genome-wide platelet transcriptomics is increasingly used to uncover new aspects of platelet biology and as a diagnostic and prognostic tool. Nevertheless, platelet isolation methods for transcriptomic studies are not standardized, introducing challenges for cross-study comparisons, data integration, and replication. In this prospective multicenter study, called "Standardizing Platelet Transcriptomics for Discovery, Diagnostics, and Therapeutics in the Thrombosis and Hemostasis Community (STRIDE)" by the International Society on Thrombosis and Haemostasis Scientific and Standardization Committees, we assessed how 3 of the most commonly used platelet isolation protocols influence metrics from next-generation bulk RNA sequencing and functional assays. Compared with washing alone, more stringent removal of leukocytes by anti-CD45 beads or PALL filters resulted in a sufficient quantity of RNA for next-generation sequencing and similar quality of RNA sequencing metrics. Importantly, stringent removal of leukocytes resulted in the lower relative expression of known leukocyte-specific genes and the higher relative expression of known platelet-specific genes. The results were consistent across enrolling sites, suggesting that the techniques are transferrable and reproducible. Moreover, all 3 isolation techniques did not influence basal platelet reactivity, but agonist-induced integrin αIIbß3 activation is reduced by anti-CD45 bead isolation compared with washing alone. In conclusion, the isolation technique chosen influences genome-wide transcriptional and functional assays in platelets. These results should help the research community make informed choices about platelet isolation techniques in their own platelet studies.

2.
Mol Oncol ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887841

RESUMO

Liquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community on which methods are the most effective or how to process the data. To circumvent this, we performed a large-scale study using various machine-learning techniques. First, we took a closer look at existing datasets and filtered out some patients to assert data collection quality. The final data collection included platelet RNA samples acquired from 1397 cancer patients (17 types of cancer) and 354 asymptomatic, presumed healthy, donors. Then, we assessed an array of different machine-learning models and techniques (e.g., feature selection of RNA transcripts) in pan-cancer detection and multiclass classification. Our results show that simple logistic regression performs the best, reaching a 68% cancer detection rate at a 99% specificity level, and multiclass classification accuracy of 79.38% when distinguishing between five cancer types. In summary, by revisiting classical machine-learning models, we have exceeded the previously used method by 5% and 9.65% in cancer detection and multiclass classification, respectively. To ease further research, we open-source our code and data processing pipelines (https://gitlab.com/jopekmaksym/improving-platelet-rna-based-diagnostics), which we hope will serve the community as a strong baseline.

3.
J Thromb Haemost ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849085

RESUMO

BACKGROUND: Aging is an independent risk factor for the development of cardiovascular, thrombotic, and other chronic diseases. However, mechanisms of platelet hyperactivation in aging remain poorly understood. OBJECTIVES: Here, we examine whether and how aging alters intracellular signaling in platelets to support platelet hyperactivity and thrombosis. METHODS: Quantitative mass spectrometry with tandem mass tag labeling systematically measured protein phosphorylation in platelets from healthy aged (>65 years) and young human (<45 years) subjects. The role of platelet mechanistic target of rapamycin (mTOR) in aging-induced platelet hyperreactivity was assessed using pharmacologic mTOR inhibition and a platelet-specific mTOR-deficient mouse model (mTORplt-/-). RESULTS: Quantitative phosphoproteomics uncovered differential site-specific protein phosphorylation within mTOR, Rho GTPase, and MAPK pathways in platelets from aged donors. Western blot confirmed constitutive activation of the mTOR pathway in platelets from both aged humans and mice, which was associated with increased aggregation compared with that in young controls. Inhibition of mTOR with either Torin 1 in aged humans or genetic deletion in aged mice reversed platelet hyperreactivity. In a collagen-epinephrine pulmonary thrombosis model, aged wild-type (mTORplt+/+) mice succumbed significantly faster than young controls, while time to death of aged mTORplt-/- mice was similar to that of young mTORplt+/+ mice. Mechanistically, we noted increased Rac1 activation and levels of mitochondrial reactive oxygen species in resting platelets from aged mice, as well as increased p38 phosphorylation upstream of thromboxane generation following agonist stimulation. CONCLUSION: Aging-related changes in mTOR phosphorylation enhance Rac1 and p38 activation to enhance thromboxane generation, platelet hyperactivity, and thrombosis.

4.
J Thromb Haemost ; 22(6): 1727-1741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537781

RESUMO

BACKGROUND: Megakaryocytes (MKs) are polyploid cells responsible for producing ∼1011 platelets daily in humans. Unraveling the mechanisms regulating megakaryopoiesis holds the promise for the production of clinical-grade platelets from stem cells, overcoming significant current limitations in platelet transfusion medicine. Previous work identified that loss of the epigenetic regulator SET domain containing 2 (SETD2) was associated with an increased platelet count in mice. However, the role of SETD2 in megakaryopoiesis remains unknown. OBJECTIVES: Here, we examined how SETD2 regulated MK development and platelet production using complementary murine and human systems. METHODS: We manipulated the expression of SETD2 in multiple in vitro and ex vivo models to assess the ploidy of MKs and the function of platelets. RESULTS: The genetic ablation of Setd2 increased the number of high-ploidy bone marrow MKs. Peripheral platelet counts in Setd2 knockout mice were significantly increased ∼2-fold, and platelets exhibited normal size, morphology, and function. By knocking down and overexpressing SETD2 in ex vivo human cell systems, we demonstrated that SETD2 negatively regulated MK polyploidization by controlling methylation of α-tubulin, microtubule polymerization, and MK nuclear division. Small-molecule inactivation of SETD2 significantly increased the production of high-ploidy MKs and platelets from human-induced pluripotent stem cells and cord blood CD34+ cells. CONCLUSION: These findings identify a previously unrecognized role for SETD2 in regulating megakaryopoiesis and highlight the potential of targeting SETD2 to increase platelet production from human cells for transfusion practices.


Assuntos
Plaquetas , Histona-Lisina N-Metiltransferase , Megacariócitos , Camundongos Knockout , Poliploidia , Trombopoese , Tubulina (Proteína) , Megacariócitos/metabolismo , Megacariócitos/citologia , Animais , Plaquetas/metabolismo , Humanos , Trombopoese/genética , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Metilação , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Contagem de Plaquetas
5.
Blood Adv ; 8(6): 1567-1569, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530305

Assuntos
Plaquetas , Proteostase
7.
Circ Res ; 134(2): 143-161, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38156445

RESUMO

BACKGROUND: Single-nucleotide polymorphisms linked with the rs1474868 T allele (MFN2 [mitofusin-2] T/T) in the human mitochondrial fusion protein MFN2 gene are associated with reduced platelet MFN2 RNA expression and platelet counts. This study investigates the impact of MFN2 on megakaryocyte and platelet biology. METHODS: Mice with megakaryocyte/platelet deletion of Mfn2 (Mfn2-/- [Mfn2 conditional knockout]) were generated using Pf4-Cre crossed with floxed Mfn2 mice. Human megakaryocytes were generated from cord blood and platelets isolated from healthy subjects genotyped for rs1474868. Ex vivo approaches assessed mitochondrial morphology, function, and platelet activation responses. In vivo measurements included endogenous/transfused platelet life span, tail bleed time, transient middle cerebral artery occlusion, and pulmonary vascular permeability/hemorrhage following lipopolysaccharide-induced acute lung injury. RESULTS: Mitochondria was more fragmented in megakaryocytes derived from Mfn2-/- mice and from human cord blood with MFN2 T/T genotype compared with control megakaryocytes. Human resting platelets of MFN2 T/T genotype had reduced MFN2 protein, diminished mitochondrial membrane potential, and an increased rate of phosphatidylserine exposure during ex vivo culture. Platelet counts and platelet life span were reduced in Mfn2-/- mice accompanied by an increased rate of phosphatidylserine exposure in resting platelets, especially aged platelets, during ex vivo culture. Mfn2-/- also decreased platelet mitochondrial membrane potential (basal) and activated mitochondrial oxygen consumption rate, reactive oxygen species generation, calcium flux, platelet-neutrophil aggregate formation, and phosphatidylserine exposure following dual agonist activation. Ultimately, Mfn2-/- mice showed prolonged tail bleed times, decreased ischemic stroke infarct size after cerebral ischemia-reperfusion, and exacerbated pulmonary inflammatory hemorrhage following lipopolysaccharide-induced acute lung injury. Analysis of MFN2 SNPs in the iSPAAR study (Identification of SNPs Predisposing to Altered ALI Risk) identified a significant association between MFN2 and 28-day mortality in patients with acute respiratory distress syndrome. CONCLUSIONS: Mfn2 preserves mitochondrial phenotypes in megakaryocytes and platelets and influences platelet life span, function, and outcomes of stroke and lung injury.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Idoso , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/metabolismo , Plaquetas/metabolismo , Hemorragia/metabolismo , Mitocôndrias/metabolismo , Fosfatidilserinas/metabolismo
9.
Aging Cell ; 22(11): e13936, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37486024

RESUMO

Muscle inflammation and fibrosis underlie disuse-related complications and may contribute to impaired muscle recovery in aging. Cellular senescence is an emerging link between inflammation, extracellular matrix (ECM) remodeling and poor muscle recovery after disuse. In rodents, metformin has been shown to prevent cellular senescence/senescent associated secretory phenotype (SASP), inflammation, and fibrosis making it a potentially practical therapeutic solution. Thus, the purpose of this study was to determine in older adults if metformin monotherapy during bed rest could reduce muscle fibrosis and cellular senescence/SASP during the re-ambulation period. A two-arm controlled trial was utilized in healthy male and female older adults (n = 20; BMI: <30, age: 60 years+) randomized into either placebo or metformin treatment during a two-week run-in and 5 days of bedrest followed by metformin withdrawal during 7 days of recovery. We found that metformin-treated individuals had less type-I myofiber atrophy during disuse, reduced pro-inflammatory transcriptional profiles, and lower muscle collagen deposition during recovery. Collagen content and myofiber size corresponded to reduced whole muscle cellular senescence and SASP markers. Moreover, metformin treatment reduced primary muscle resident fibro-adipogenic progenitors (FAPs) senescent markers and promoted a shift in fibroblast fate to be less myofibroblast-like. Together, these results suggest that metformin pre-treatment improved ECM remodeling after disuse in older adults by possibly altering cellular senescence and SASP in skeletal muscle and in FAPs.


Assuntos
Metformina , Masculino , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Fenótipo Secretor Associado à Senescência , Senescência Celular/genética , Músculo Esquelético , Inflamação , Caminhada , Colágeno , Fibrose
10.
J Thromb Haemost ; 21(10): 2917-2928, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364776

RESUMO

BACKGROUND: Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES: We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS: We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS: We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION: Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.


Assuntos
Plaquetas , Inibidor 1 de Ativador de Plasminogênio , Animais , Camundongos , Plaquetas/metabolismo , Fibrinólise , Genômica , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Locos de Características Quantitativas , Humanos
11.
Res Pract Thromb Haemost ; 7(2): 100097, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37063755

RESUMO

The inaugural McMaster Immune Thrombocytopenia (ITP) Summit was held virually in 2021. The objectives of the Summit were to recognize the difficulties in establishing the diagnosis of ITP and to understand gaps in current knowledge of ITP mechanisms that might lead to better diagnostic approaches and treatments. The half-day program consisted of virtual educational sessions targeting clinicians and basic scientists. The planning committee chose 8 topics to review that would cover current knowledge and inform future research priorities. In this report, we summarized the presentations delivered at the 2021 McMaster ITP Summit and the discussions. Based on the information presented at the Summit, the following research priorities were identified: 1) investigation of platelet production as a target for ITP treatments; 2) characterization of antigen processing and antigen presentation on platelets; 3) interaction between megakaryocytes and the immune system; 4) the role for ITP gene panels; 5) the need for better methods for platelet antibody testing; 6) the role of prediction models for diagnosis and prognosis; 7) new treatment strategies, including intensification of initial therapy; and 8) personalized treatment algorithms.

12.
Res Pract Thromb Haemost ; 7(3): 100124, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37012986

RESUMO

Background: Circulating procoagulant extracellular vesicles (EVs) are increased in diseases, such as cancer, sepsis, and COVID-19. EV tissue factor (TF) activity is associated with disseminated intravascular coagulation in sepsis and venous thrombosis in patients with pancreatic cancer and COVID-19. EVs are commonly isolated by centrifugation at ∼20,000 g. Objectives: In this study, we analyzed the TF activity of 2 EV populations enriched for large and small EVs in patients with either sepsis, pancreatic cancer, or COVID-19. Methods: EVs were isolated from plasma by sequential centrifugation at 20,000 g (large EVs, LEVs) and then 100,000 g (small EVs, SEVs). We analyzed EVs from plasma prepared from whole blood samples from healthy individuals with or without lipopolysaccharide (LPS) stimulation as well as EVs from plasma samples from patients with either sepsis, pancreatic cancer, or COVID-19. TF-dependent (EV-TF activity) and TF-independent factor Xa (FXa) generation of the EVs was measured. Results: LPS increased EV-TF activity in LEVs but not SEVs. Similarly, in 2 patients with sepsis who had EV-TF activity above the background of the assay we observed EV-TF activity in LEVs but not SEVs. Patients with pancreatic cancer or COVID-19 had circulating EV-TF activity in both LEVs and SEVs. Conclusion: We recommend that EVs are isolated from plasma from patients by centrifugation at 100,000 g rather than 20,000 g to obtain a more accurate measure of levels of circulating EV-TF activity.

13.
Pharmacotherapy ; 43(3): 215-225, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755519

RESUMO

STUDY OBJECTIVE: Aspirin (ASA) has demonstrated inconsistent results in primary prevention of cardiovascular disease (CVD). Guidelines are also inconsistent in the recommendation of routine ASA use for primary prevention of CVD, but advocate dosing as a "one-size-fits-all" approach. DESIGN: An intention-to-treat, double-blind, randomized, controlled, clinical trial comparing three treatment arms of ASA 81, 325, and 500 mg daily dosed for 14 days were evenly randomized across the dosing categories to measure the impact of dosing by body mass index (BMI) (20-24.9, 25-29.9, ≥30 kg/m2 ) on ASA anti-platelet effects. SETTING: University Ambulatory Clinic. PATIENTS: Healthy volunteers defined as individuals who were medication free without acute or chronic significant health problems. INTERVENTION: Change in ASA reactivity unit (ARU), salicylate levels, and thromboxane B2 (TxB2) levels were measured across BMI dosing categories and time. MAIN RESULTS: Fifty-four participants with a mean (±SD) age of 34.4 ± 10.9 years (M:F; 23:31) completed the study. Baseline ARU and TxB2 levels were not significantly different between obese and non-obese individuals. BMI was not a predictor of platelet inhibition. There was no interaction between gender and platelet activation at baseline or following ASA treatment. ASA 81 mg was associated with a lower ARU response (approximate 50% lower response) than either the 325-mg or the 500-mg doses of ASA. TxB2 and salicylate levels exhibited lower trends at 81 mg compared with higher doses. CONCLUSIONS: In healthy male and female participants administered ASA for 14 days, obesity is not associated with increased basal platelet activation or ASA resistance. ASA 81 mg was significantly less effective in reducing platelet aggregation compared with ASA 325 and 500 mg, independent of BMI.


Assuntos
Doenças Cardiovasculares , Inibidores da Agregação Plaquetária , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Índice de Massa Corporal , Voluntários Saudáveis , Estudos Prospectivos , Aspirina , Tromboxano B2 , Obesidade/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico
15.
Aging Cell ; 22(2): e13749, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36656789

RESUMO

Platelets are uniquely positioned as mediators of not only hemostasis but also innate immunity. However, how age and geriatric conditions such as frailty influence platelet function during an immune response remains unclear. We assessed the platelet transcriptome at baseline and following influenza vaccination in Younger (age 21-35) and Older (age ≥65) adults (including community-dwelling individuals who were largely non-frail and skilled nursing facility (SNF)-resident adults who nearly all met criteria for frailty). Prior to vaccination, we observed an age-associated increase in the expression of platelet activation and mitochondrial RNAs and decrease in RNAs encoding proteins mediating translation. Age-associated differences were also identified in post-vaccination response trajectories over 28 days. Using tensor decomposition analysis, we found increasing RNA expression of genes in platelet activation pathways in young participants, but decreasing levels in (SNF)-resident adults. Translation RNA trajectories were inversely correlated with these activation pathways. Enhanced platelet activation was found in community-dwelling older adults at the protein level, compared to young individuals both prior to and post-vaccination; whereas SNF residents showed decreased platelet activation compared to community-dwelling older adults that could reflect the influence of decreased translation RNA expression. Our results reveal alterations in the platelet transcriptome and activation responses that may contribute to age-associated chronic inflammation and the increased incidence of thrombotic and pro-inflammatory diseases in older adults.


Assuntos
Fragilidade , Influenza Humana , Humanos , Idoso , Adulto Jovem , Adulto , Recém-Nascido , Fragilidade/metabolismo , Influenza Humana/prevenção & controle , Envelhecimento/genética , Plaquetas/metabolismo , Vacinação , Idoso Fragilizado
16.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194487

RESUMO

Platelets and megakaryocytes are critical players in immune responses. Recent reports suggest infection and inflammation alter the megakaryocyte and platelet transcriptome to induce altered platelet reactivity. We determined whether nonviral sepsis induces differential platelet gene expression and reactivity. Nonviral sepsis upregulated IFN-induced transmembrane protein 3 (IFITM3), an IFN-responsive gene that restricts viral replication. As IFITM3 has been linked to clathrin-mediated endocytosis, we determined whether IFITM3 promoted endocytosis of α-granule proteins. IFN stimulation enhanced fibrinogen endocytosis in megakaryocytes and platelets from Ifitm+/+ mice, but not Ifitm-/- mice. IFITM3 overexpression or deletion in megakaryocytes demonstrated IFITM3 was necessary and sufficient to regulate fibrinogen endocytosis. Mechanistically, IFITM3 interacted with clathrin and αIIb and altered their plasma membrane localization into lipid rafts. In vivo IFN administration increased fibrinogen endocytosis, platelet reactivity, and thrombosis in an IFITM-dependent manner. In contrast, Ifitm-/- mice were completely rescued from IFN-induced platelet hyperreactivity and thrombosis. During murine sepsis, platelets from Ifitm+/+ mice demonstrated increased fibrinogen content and platelet reactivity, which was dependent on IFN-α and IFITMs. Platelets from patients with nonviral sepsis had increases in platelet IFITM3 expression, fibrinogen content, and hyperreactivity. These data identify IFITM3 as a regulator of platelet endocytosis, hyperreactivity, and thrombosis during inflammatory stress.


Assuntos
Endocitose , Fibrinogênio , Proteínas de Membrana , Sepse , Animais , Camundongos , Clatrina , Fibrinogênio/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sepse/genética
17.
Blood ; 140(23): 2477-2489, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930749

RESUMO

The MAPK-interacting kinase (Mnk) family includes Mnk1 and Mnk2, which are phosphorylated and activated in response to extracellular stimuli. Mnk1 contributes to cellular responses by regulating messenger RNA (mRNA) translation, and mRNA translation influences platelet production and function. However, the role of Mnk1 in megakaryocytes and platelets has not previously been studied. The present study investigated Mnk1 in megakaryocytes and platelets using both pharmacological and genetic approaches. We demonstrate that Mnk1, but not Mnk2, is expressed and active in human and murine megakaryocytes and platelets. Stimulating human and murine megakaryocytes and platelets induced Mnk1 activation and phosphorylation of eIF4E, a downstream target of activated Mnk1 that triggers mRNA translation. Mnk1 inhibition or deletion significantly diminished protein synthesis in megakaryocytes as measured by polysome profiling and [35S]-methionine incorporation assays. Depletion of Mnk1 also reduced megakaryocyte ploidy and proplatelet forming megakaryocytes in vitro and resulted in thrombocytopenia. However, Mnk1 deletion did not affect the half-life of circulating platelets. Platelets from Mnk1 knockout mice exhibited reduced platelet aggregation, α granule secretion, and integrin αIIbß3 activation. Ribosomal footprint sequencing indicated that Mnk1 regulates the translation of Pla2g4a mRNA (which encodes cPLA2) in megakaryocytes. Consistent with this, Mnk1 ablation reduced cPLA2 activity and thromboxane generation in platelets and megakaryocytes. In vivo, Mnk1 ablation protected against platelet-dependent thromboembolism. These results provide previously unrecognized evidence that Mnk1 regulates mRNA translation and cellular activation in platelets and megakaryocytes, endomitosis and thrombopoiesis, and thrombosis.


Assuntos
RNA Mensageiro , Humanos , Animais , Camundongos
18.
Nat Rev Immunol ; 22(10): 639-649, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35931818

RESUMO

COVID-19-associated coagulopathy (CAC) is a life-threatening complication of SARS-CoV-2 infection. However, the underlying cellular and molecular mechanisms driving this condition are unclear. Evidence supports the concept that CAC involves complex interactions between the innate immune response, the coagulation and fibrinolytic pathways, and the vascular endothelium, resulting in a procoagulant condition. Understanding of the pathogenesis of this condition at the genomic, molecular and cellular levels is needed in order to mitigate thrombosis formation in at-risk patients. In this Perspective, we categorize our current understanding of CAC into three main pathological mechanisms: first, vascular endothelial cell dysfunction; second, a hyper-inflammatory immune response; and last, hypercoagulability. Furthermore, we pose key questions and identify research gaps that need to be addressed to better understand CAC, facilitate improved diagnostics and aid in therapeutic development. Finally, we consider the suitability of different animal models to study CAC.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Animais , Transtornos da Coagulação Sanguínea/etiologia , COVID-19/complicações , Endotélio Vascular , SARS-CoV-2 , Trombose/etiologia
19.
Exp Gerontol ; 163: 111804, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35405248

RESUMO

BACKGROUND AND AIMS: Metformin is the most commonly prescribed medication to treat diabetes. Emerging evidence suggests that metformin could have off target effects that might help promote healthy muscle aging, but these effects have not been thoroughly studied in glucose tolerant older individuals. The purpose of this study was to investigate the short-term effects of metformin consumption on skeletal muscle mitochondrial bioenergetics in healthy older adults. METHODS: We obtained muscle biopsy samples from 16 healthy older adults previously naïve to metformin and treated with metformin (METF; 3F, 5M), or placebo (CON; 3F, 5M), for two weeks using a randomized and blinded study design. Samples were analyzed using high-resolution respirometry, immunofluorescence, and immunoblotting to assess muscle mitochondrial bioenergetics, satellite cell (SC) content, and associated protein markers. RESULTS: We found that metformin treatment did not alter maximal mitochondrial respiration rates in muscle compared to CON. In contrast, mitochondrial H2O2 emission and production were elevated in muscle samples from METF versus CON (METF emission: 2.59 ± 0.72 SE Fold, P = 0.04; METF production: 2.29 ± 0.53 SE Fold, P = 0.02). Furthermore, the change in H2O2 emission was positively correlated with the change in type 1 myofiber SC content and this was biased in METF participants (Pooled: R2 = 0.5816, P = 0.0006; METF: R2 = 0.674, P = 0.0125). CONCLUSIONS: These findings suggest that acute exposure to metformin does not impact mitochondrial respiration in aged, glucose-tolerant muscle, but rather, influences mitochondrial-free radical and SC dynamics. CLINICAL TRIAL REGISTRATION: NCT03107884, clinicaltrials.gov.


Assuntos
Metformina , Idoso , Glucose/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo
20.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35324479

RESUMO

As blood transitions from steady laminar flow (S-flow) in healthy arteries to disturbed flow (D-flow) in aneurysmal arteries, platelets are subjected to external forces. Biomechanical platelet activation is incompletely understood and is a potential mechanism behind antiplatelet medication resistance. Although it has been demonstrated that antiplatelet drugs suppress the growth of abdominal aortic aneurysms (AAA) in patients, we found that a certain degree of platelet reactivity persisted in spite of aspirin therapy, urging us to consider additional antiplatelet therapeutic targets. Transcriptomic profiling of platelets from patients with AAA revealed upregulation of a signal transduction pathway common to olfactory receptors, and this was explored as a mediator of AAA progression. Healthy platelets subjected to D-flow ex vivo, platelets from patients with AAA, and platelets in murine models of AAA demonstrated increased membrane olfactory receptor 2L13 (OR2L13) expression. A drug screen identified a molecule activating platelet OR2L13, which limited both biochemical and biomechanical platelet activation as well as AAA growth. This observation was further supported by selective deletion of the OR2L13 ortholog in a murine model of AAA that accelerated aortic aneurysm growth and rupture. These studies revealed that olfactory receptors regulate platelet activation in AAA and aneurysmal progression through platelet-derived mediators of aortic remodeling.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma Aórtico , Receptores Odorantes , Animais , Aneurisma Aórtico/genética , Aneurisma Aórtico/metabolismo , Aneurisma da Aorta Abdominal/genética , Plaquetas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Ativação Plaquetária , Inibidores da Agregação Plaquetária/uso terapêutico , Receptores Odorantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA