RESUMO
BACKGROUND: A positive resection margin is a major risk factor for local breast cancer recurrence after breast-conserving surgery (BCS). Preoperative imaging examinations are frequently employed to assess the surgical margin. AIM: To investigate the role and value of preoperative imaging examinations [magnetic resonance imaging (MRI), molybdenum target, and ultrasound] in evaluating margins for BCS. METHODS: A retrospective study was conducted on 323 breast cancer patients who met the criteria for BCS and consented to the procedure from January 2014 to July 2021. The study gathered preoperative imaging data (MRI, ultrasound, and molybdenum target examination) and intraoperative and postoperative pathological information. Based on their BCS outcomes, patients were categorized into positive and negative margin groups. Subsequently, the patients were randomly split into a training set (226 patients, approximately 70%) and a validation set (97 patients, approximately 30%). The imaging and pathological information was analyzed and summarized using R software. Non-conditional logistic regression and LASSO regression were conducted in the validation set to identify factors that might influence the failure of BCS. A column chart was generated and applied to the validation set to examine the relationship between pathological margin range and prognosis. This study aims to identify the risk factors associated with failure in BCS. RESULTS: The multivariate non-conditional logistic regression analysis demonstrated that various factors raise the risk of positive margins following BCS. These factors comprise non-mass enhancement (NME) on dynamic contrast-enhanced MRI, multiple focal vascular signs around the lesion on MRI, tumor size exceeding 2 cm, type III time-signal intensity curve, indistinct margins on molybdenum target examination, unclear margins on ultrasound examination, and estrogen receptor (ER) positivity in immunohistochemistry. LASSO regression was additionally employed in this study to identify four predictive factors for the model: ER, molybdenum target tumor type (MT Xmd Shape), maximum intensity projection imaging feature, and lesion type on MRI. The model constructed with these predictive factors exhibited strong consistency with the real-world scenario in both the training set and validation set. Particularly, the outcomes of the column chart model accurately predicted the likelihood of positive margins in BCS. CONCLUSION: The proposed column chart model effectively predicts the success of BCS for breast cancer. The model utilizes preoperative ultrasound, molybdenum target, MRI, and core needle biopsy pathology evaluation results, all of which align with the real-world scenario. Hence, our model can offer dependable guidance for clinical decision-making concerning BCS.
RESUMO
OBJECTIVES: The aim of this study was to make a reasonable and accurate assessment of the prognosis of patients with pontine infarction. We assessed the changes in structure and function in the whole brain after pontine infarction from the acute to chronic phase using diffustion tensor imaging and functional magnetic resonance imaging. MATERIALS AND METHODS: Sixteen individuals with a recent pontine infarction and sixteen healthy controls were recruited and underwent 3.0T DTI, resting-state fMRI and upper extremity Fugl-Myer (UE-FM) functional evaluation at five time points: within one week (T1), half a month (T2), one month (T3), three months (T4), and six months (T5) after onset. Tract-based spatial statistics was used to conduct a voxelwise analysis. RESULTS: The fractional anisotropy (FA) values were significantly lower in the pontine infarction group than in the control group. Then, specific ROIs were analyzed. The FA values of 10 regions of interest were significantly increased at T2 compared with those at T1. The FA value of the corticospinal tract was significantly increased at T3 compared with that at T2. Regional brain activity results showed that the amplitude of low frequency fluctuations value of the frontal lobe decreased at T1, then increased. Finally, The UE-FM scores showed the same increased trend. CONCLUSION: These findings show that the microstructure changes most significantly within half a month after pontine infarction and stabilizes after one month. The recovery of motor function in the later period is mainly caused by changes in the cortex. This facilitates more treatment options.
Assuntos
Infartos do Tronco Encefálico , Encéfalo , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Infartos do Tronco Encefálico/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Estudos Longitudinais , Imageamento por Ressonância MagnéticaRESUMO
In this study, we report a familial cluster of cases which included five patients and two close contacts who were confirmed to have coronavirus disease 2019 (COVID-19). These participants had received real-time reverse transcription-polymerase chain reaction (RT-PCR) and chest X-rays (CXRs) before diagnosis. The follow-up CXRs of three patients in the family showed significant progression, with COVID-19 pneumonia, clinically worsening in a short period of time. Therefore, the results of follow-up CXRs in the short-term may be an adjunctive diagnostic method for COVID-19 disease diagnosis and its progression. Key Words: Chest X-ray, COVID-19, RT-PCR, Familial clustering.
Assuntos
COVID-19 , Seguimentos , Humanos , Pulmão , Radiografia Torácica , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Raios XRESUMO
OBJECTIVE: This study intends to track whole-brain functional connectivity strength (FCS) changes and the lateralization index (LI) in left basal ganglia (BG) ischemic stroke patients. METHODS: Twenty-five patients (N = 25; aged 52.73 ± 10.51 years) with five visits at <7, 14, 30, 90, and 180 days and 26 healthy controls (HCs; N = 26; 51.84 ± 8.06 years) were examined with resting-state functional magnetic resonance imaging (rs-fMRI) and motor function testing. FCS and LI were calculated through constructing the voxel-based brain functional network. One-way analysis of covariance (ANOVA) was first performed to obtain longitudinal FCS and LI changes in patients among the five visits (Bonferroni corrected, P < 0.05). Then, pairwise comparisons of FCS and LI were obtained during the five visits, and the two-sample t test was used to examine between-group differences in FCS [family-wise error (FWE) corrected, P < 0.05] and LI. Correlations between connectivity metrics (FCS and LI) and motor function were further assessed. RESULTS: Compared to HCs, decreased FCS in the patients localized in the calcarine and inferior occipital gyrus (IOG), while increased FCS gathered in the middle prefrontal cortex (MPFC), middle frontal gyrus, and insula (P < 0.05). The LI and FCS of patients first decreased and then increased, which showed significant differences compared with HCs (P < 0.05) and demonstrated a transition at the 30-day visit. Additionally, LI at the third visit was significantly different from those at the other visits (P < 0.05). No significant longitudinal correlations were observed between motor function and FCS or LI (P > 0.05). CONCLUSION: Focal ischemic stroke in the left BG leads to extensive alterations in the FCS. Strong plasticity in the functional networks could be reorganized in different temporal dynamics to facilitate motor recovery after BG stroke, contribute to diagnosing the disease course, and estimate the intervention treatment.
RESUMO
Connectivity-based methods are essential to explore brain reorganization after a stroke and to provide meaningful predictors for late motor recovery. We aim to investigate the homotopic connectivity alterations during a 180-day follow-up of patients with pontine infarction to find an early biomarker for late motor recovery prediction. In our study, resting-state functional MRI was performed in 15 patients (11 males, 4 females, age: 57.87 ± 6.50) with unilateral pontine infarction and impaired motor function during a period of 6 months (7, 14, 30, 90, and 180 days after stroke onset). Clinical neurological assessments were performed using the Fugl-Meyer scale (FM).15 matched healthy volunteers were also recruited. Whole-brain functional homotopy in each individual scan was measured by voxel-mirrored homotopic connectivity (VMHC) values. Group-level analysis was performed between stroke patients and normal controls. A Pearson correlation was performed to evaluate correlations between early VMHC and the subsequent 4 visits for behavioral measures during day 14 to day 180. We found in early stroke (within 7 days after onset), decreased VMHC was detected in the bilateral precentral and postcentral gyrus and precuneus/posterior cingulate cortex (PCC), while increased VMHC was found in the hippocampus/amygdala and frontal pole (P < 0.01). During follow-up, VMHC in the precentral and postcentral gyrus increased to the normal level from day 90, while VMHC in the precuneus/PCC presented decreased intensity during all time points (P < 0.05). The hippocampus/amygdala and frontal pole presented a higher level of VMHC during all time points (P < 0.05). Negative correlation was found between early VMHC in the hippocampus/amygdala with FM on day 14 (r = -0.59, p = 0.021), day 30 (r = -0.643, p = 0.01), day 90 (r = -0.693, p = 0.004), and day 180 (r = -0.668, p = 0.007). Furthermore, early VMHC in the frontal pole was negatively correlated with FM scores on day 30 (r = -0.662, p = 0.013), day 90 (r = -0.606, p = 0.017), and day 180 (r = -0.552, p = 0.033). Our study demonstrated the potential utility of early homotopic connectivity for prediction of late motor recovery in pontine infarction.
RESUMO
RATIONALE: This report describes seroconversion of hepatitis B surface antigen (HBsAg) in a patient with marked iron overload caused by chronic hepatitis B (CHB) after receiving iron chelation therapy and discusses the role of iron chelation therapy in CHB. PATIENT CONCERNS: Increased serum ferritin level for 2 months. DIAGNOSIS: Secondary iron overload and CHB. INTERVENTION: To relieve iron load of the body, the patient underwent regular phlebotomy therapy and deferoxamine (DFO) therapy. During the therapy, serum ferritin and hepatitis B virus (HBV) were monitored and the iron concentration of the liver and heart were followed by T2* of magnetic resonance imaging (MRI) scan. OUTCOMES: Serum ferritin gradually decreased. Approximately 1 year after the therapy, HBsAg turned persistently negative. LESSONS: Iron chelation therapy may attenuate HBV infection.