Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 12232-12243, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422547

RESUMO

Patterned surfaces with distinct regularity and structured arrangements have attracted great interest due to their extensive promising applications. Although colloidal patterning has conventionally been used to create such surfaces, herein, we introduce a novel 3D patterned poly(N-isopropylacrylamide) (PNIPAM) surface, synthesized by using a combination of colloidal templating and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization. In order to investigate the temperature-driven 3D morphological variations at a lower critical solution temperature (LCST) of ∼32 °C, multifaceted characterization techniques were employed. Atomic force microscopy confirmed the morphological transformations at 20 and 40 °C, while water contact angle measurements, upon heating, revealed distinct trends, offering insights into the correlation between surface wettability and topography adaptations. Moreover, quartz crystal microbalance with dissipation monitoring and electrochemical measurements were employed to detect the topographical adjustments of the unique hollow capsule structure within the LCST. Tests using different sizes of PSNPs shed light on the size-selective capture-release potential of the patterned PNIPAM, accentuating its biomimetic open-close behavior. Notably, our approach negates the necessity for expensive proteins, harnessing temperature adjustments to facilitate the noninvasive and efficient reversible capture and release of nanostructures. This advancement hopes to pave the way for future innovative cellular analysis platforms.

2.
J Colloid Interface Sci ; 637: 33-40, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36682116

RESUMO

HYPOTHESIS: Hyperbranched polymers, not only possess higher functionality, but are also easier to prepare compared to dendrimers and dendric polymers. Combining electrodeposition and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization is hypothesized to be a novel strategy for preparing hyperbranched polymer films on conductive surfaces without degassing. EXPERIMENTS: Polymer brush grafted films with four different architectures (i.e. linear, branched, linear-block-branched, and branched-block-linear) were prepared on gold-coated glass substrates using electrodeposition, followed by SI-PET-RAFT polymerization. The resulting film structure and thickness, surface topology, absorption property, and electrochemical behavior were confirmed by spectroscopy, microscopy, microbalance technique, and impedance measurement. FINDINGS: These hyperbranched polymer brushes were capable of forming a thicker but more uniformly covered films compared to linear polymer brush films, demonstrating that hyperbranched polymer films can be potentially useful for fabricating protective polymer coatings on various conductive surfaces.

3.
Langmuir ; 38(32): 9751-9759, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35921602

RESUMO

Interfacial properties of polymeric materials are significantly influenced by their architectural structures and spatial features, while such a study of topologically interesting macromolecules is rarely reported. In this work, we reported, for the first time, the interfacial behavior of catenated poly(l-lactide) (C-PLA) at the air-water interface and compared it with its linear analogue (L-PLA). The isotherms of surface pressure-area per repeating unit showed significant interfacial behavioral differences between the two polymers with different topologies. Isobaric creep experiments and compression-expansion cycles also showed that C-PLA demonstrated higher stability at the air-water interface. Interestingly, when the films at different surface pressures were transferred via the Langmuir-Blodgett method, successive atomic force microscopy imaging displayed distinct nanomorphologies, in which the surface of C-PLA exhibited nanofibrous structures, while that of the L-PLA revealed a smoother topology with less fiber-like structures.


Assuntos
Ar , Água , Microscopia de Força Atômica , Poliésteres/química , Polímeros/química , Propriedades de Superfície , Água/química
4.
J Colloid Interface Sci ; 616: 221-233, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35203035

RESUMO

HYPOTHESIS: We hypothesize that varying the chemical structure of the monomeric unit in a polymer will affect the surface structure and interfacial molecular group orientations of the polymer film leveraging its response to solvents of different chemical affinities. EXPERIMENTS: Poly (2-methoxy ethyl methacrylate) and poly (2-tertbutoxy ethyl methacrylate) thin films exposed to either deuterated water (D2O) or deuterated chloroform (CDCl3) were studied by sum frequency generation (SFG) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM) at the polymer-solvent interface, supported with molecular simulation studies. FINDINGS: SFG spectral analysis of the polymer thin films corroborated molecular re-organization at the surface when exposed to different chemical environments. The AFM height images of the polymer surfaces were homogeneously flat under CDCl3 and showed swollen regions under D2O. Following the removal of D2O, the exposed areas have imprinted, recessed locations and exposure to CDCl3 resulted in the formation of aggregates. The chemical affinity and characteristics of the solvents played a role in conformational change at the polymer surface. It had direct implications to interfacial processes involving adsorption, permeation which eventually leads to swelling, deformation or aggregation, and possibly dissolution.


Assuntos
Metacrilatos , Polímeros , Metacrilatos/química , Microscopia de Força Atômica , Polímeros/química , Solventes/química , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 12(44): 50052-50060, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33103879

RESUMO

An unprecedented four-dimensional (4D) printing process allowing high-performance and shape memory thermoset to be printed, for the first time, by fused deposition modeling (FDM) with isotropic properties has been achieved. Bisphenol A-based epoxy and benzoxazine were formulated to a low-temperature thermoplastic and high-temperature thermoset resin, which is melt-extrudable and can be postcured into covalently cross-linked material. Carbon nanotube (CNT) was added in the resin to work as both mechanical enhancement filler and rheology modifier to prevent shape deformation during postcuring process. The cross-layer reaction fuses individual layers into an integrity, thus eliminating layer delamination induced by FDM, offering isotropic mechanical properties regardless of the printing orientations. The highly cross-linked network provides outstanding mechanical strength and superb thermal stability. The excellent shape memory performance with fast recovery rate and large recovery degree is also obtained in the three-dimensional (3D) printed composites.

6.
Small ; 14(22): e1800115, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29700977

RESUMO

Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method. The PNS is also demonstrated as a novel controlled guest release system, in which release kinetics are adjustable by the nanosheet thickness, pH values of the media, and the presence of protecting layers. Theoretical simulations, including Korsmeyer-Peppas model and Finite-element analysis, are also employed to discern the observed guest-release mechanisms.

7.
Nanoscale ; 8(14): 7435-42, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26659728

RESUMO

The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA