Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell Metab ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293433

RESUMO

Adipose tissue macrophages (ATMs) play important roles in maintaining adipose tissue homeostasis and orchestrating metabolic inflammation. Given the extensive functional heterogeneity and phenotypic plasticity of ATMs, identification of the authentically pathogenic ATM subpopulation under obese setting is thus necessitated. Herein, we performed single-nucleus RNA sequencing (snRNA-seq) and unraveled a unique maladaptive ATM subpopulation defined as ATF4hiPDIA3hiACSL4hiCCL2hi inflammatory and metabolically activated macrophages (iMAMs), in which PDIA3 is required for the maintenance of their migratory and pro-inflammatory properties. Mechanistically, ATF4 serves as a metabolic stress sensor to transcribe PDIA3, which then imposes a redox control on RhoA activity and strengthens the pro-inflammatory and migratory properties of iMAMs through RhoA-YAP signaling. Administration of Pdia3 small interfering RNA (siRNA)-loaded liposomes effectively repressed adipose inflammation and high-fat diet (HFD)-induced obesity. Together, our data support that strategies aimed at targeting iMAMs by suppressing PDIA3 expression or activity could be a viable approach against obesity and metabolic disorders in clinical settings.

2.
Biomed Mater ; 19(6)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208855

RESUMO

Artificial bone is the alternative candidate for the bone defect treatment under the circumstance that there exits enormous challenge to remedy the bone defect caused by attributes like trauma and tumors. However, the impact of pore size discrepancy for regulating new bone generation is still ambiguous. Using direct 3D printing technology, customized 3D polycaprolactone/ß-tricalcium phosphate (PCL/ß-TCP) artificial bones with different structural pore sizes (1.8, 2.0, 2.3, 2.5, and 2.8 mm) were successfully prepared, abbreviated as the 3D PCL/ß-TCP. 3D PCL/ß-TCP exhibited a 3D porous structure morphology similar to natural bone and possessed outstanding mechanical properties. Computational fluid dynamics analysis indicated that as the structural pore size increased from 1.8 to 2.8 mm, both velocity difference (from 4.64 × 10-5to 7.23 × 10-6m s-1) and depressurization (from 7.17 × 10-2to 2.25 × 10-2Pa) decreased as the medium passed through.In vitrobiomimetic mineralization experiments confirmed that 3D PCL/ß-TCP artificial bones could induce calcium-phosphate complex generation within 4 weeks. Moreover, CCK-8 and Calcein AM live cell staining experiments demonstrated that 3D PCL/ß-TCP artificial bones with different structural pore sizes exhibited advantageous cell compatibility, promoting MC3T3-E1 cell proliferation and adhesion.In vivoexperiments in rats further indicated that 3D PCL/ß-TCP artificial bones with different structural pore sizes promoted new bone formation, with the 2.5 mm group showing the most significant effect. In conclusion, 3D PCL/ß-TCP artificial bone with different structural pore sizes could promote new bone formation and 2.5 mm group was the recommended for the bone defect repair.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Teste de Materiais , Poliésteres , Impressão Tridimensional , Alicerces Teciduais , Fosfatos de Cálcio/química , Poliésteres/química , Animais , Porosidade , Substitutos Ósseos/química , Ratos , Alicerces Teciduais/química , Camundongos , Osso e Ossos/metabolismo , Materiais Biocompatíveis/química , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Osteoblastos/citologia , Ratos Sprague-Dawley , Masculino , Proliferação de Células/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos
3.
Global Spine J ; : 21925682241270090, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078998

RESUMO

STUDY DESIGN: Biomechanical testings and finite element analysis. OBJECTIVES: This study aims to investigate how annulus fibrosus (AF) incision size (RIS, Ratio of incision width to AF height) and shape affect intervertebral disc (IVD) biomechanics. METHODS: A validated finite element model of lumbar spines simulated various incisions in the middle-right posterior region of the AF, with different sizes and shapes. Simulations included axial compression, flexion, extension, bending, and rotation. Parameters assessed included stability, re-herniation, and IVD degeneration by analyzing stress, height, Intradiscal pressure (IDP), and the range of motion (ROM). RESULTS: Incision increased AF stress and ROM under 3 Nm moment, with values rising as RIS increased. RIS exceeding 40% resulted in a 20% AF stress increase during compression and extension, while RIS over 50% led to over 20% AF stress increase during other motions. Incision stress also increased with higher RIS, particularly surpassing 50% RIS. IDP rose across all incision shapes. Endplate stress increased (9.9%-48.9%) with larger incisions, with average increases of 12.8%, 12.7%, 30.5%, and 22.8% for circular, oval, square, and rectangular incisions. Compression and rotation minimally affected NP pressure (<15%), while flexion (19.8%-38.8%) and bending (18.5%-43.9%) had a more pronounced effect. ROM increased with RIS (20.0% ∼ 77.4%), especially with an incision RIS exceeding 40%. CONCLUSIONS: AF injury elevates AF stress, reduces spine stability, heightens degeneration risk with increasing RIS. Reherniation risk rises when RIS exceeds 40%. Circular or oval incisions maintain spine biomechanics better than square or rectangular ones.

4.
iScience ; 27(6): 109798, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947509

RESUMO

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program. GSK2334470 (GSK), a dual PDPK1/SGK1 inhibitor, effectively mitigated the HS-induced enhancement in glycolytic capacity and the overproduction of IL-17A. Therefore, administration of GSK markedly alleviated HS-exacerbated RA progression in collagen-induced arthritis (CIA) model. Collectively, our data indicate that HS consumption subverts Th17/Treg homeostasis through the PDPK1-SGK1-FoxO1 signaling, while GSK could be a viable drug against RA progression in clinical settings.

5.
Spine J ; 24(10): 2002-2012, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38914373

RESUMO

BACKGROUND CONTEXT: Large annulus fibrosus (AF) defects often lead to a high rate of reherniation, particularly in the medial AF region, which has limited self-healing capabilities. The increasing prevalence of herniated discs underscores the need for effective repair strategies. PURPOSE: The objectives of this study were to design an AF repair technique to reduce solve the current problems of insufficient mechanical properties and poor sealing capacity. STUDY DESIGN: In vitro biomechanical experiments and finite element analysis. METHODS: The materials used in this study were patches and hydrogels with good biocompatibility and sufficient mechanical properties to withstand loading in the lumbar spine. Five repair techniques were assessed in this study: hydrogel filler (HF), AF patch medial barrier (MB), AF patch medial barrier and hydrogel filler (MB&HF), AF patch medial-lateral barrier (MLB), and AF patch medial-lateral barrier and hydrogel filler (MLB&HF). The repair techniques were subjected to in vitro testing (400 N axial compression and 0-500 N fatigue loading at 5Hz) and finite element analysis (400 N axial compression) to evaluate the effectiveness at repairing large AF defects. The evaluation included repair tightness, spinal stability, and fatigue resistance. RESULTS: From the in vitro testing, the failure load of the repair techniques was in the following order HF MLB >MB&HF >MLB&HF. CONCLUSIONS: The combined use of patches and hydrogels exhibited promising mechanical properties postdiscectomy, providing a promising solution for addressing large AF defects and improving disc stability. CLINICAL SIGNIFICANCE: This study introduces a promising method for repairing large annular fissure (AF) defects after disc herniation, combining patch repair with a hydrogel filler. These techniques hold potential for developing clinical AF repair products to address this challenging issue.


Assuntos
Anel Fibroso , Hidrogéis , Deslocamento do Disco Intervertebral , Anel Fibroso/cirurgia , Deslocamento do Disco Intervertebral/cirurgia , Hidrogéis/administração & dosagem , Humanos , Análise de Elementos Finitos , Fenômenos Biomecânicos , Recidiva , Animais , Vértebras Lombares/cirurgia
6.
Mol Ther ; 32(8): 2778-2797, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822524

RESUMO

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.


Assuntos
Artrite Reumatoide , Isomerases de Dissulfetos de Proteínas , Fator de Transcrição STAT1 , Isomerases de Dissulfetos de Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Humanos , Artrite Reumatoide/metabolismo , Camundongos , Animais , Fator de Transcrição STAT1/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/metabolismo , Transdução de Sinais , Proteínas de Ligação a Hormônio da Tireoide , Fatores de Transcrição NFATC/metabolismo , Ativação Linfocitária , Hormônios Tireóideos/metabolismo , Regulação da Expressão Gênica , Células Th17/metabolismo , Células Th17/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Modelos Animais de Doenças , Piruvato Quinase
7.
Int Urol Nephrol ; 56(8): 2659-2670, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38483736

RESUMO

Sirtuin 6 (SIRT6) can inhibit the fibrosis of many organs. However, the relationship between SIRT6 and peritoneal fibrosis (PF) in peritoneal dialysis (PD) remains unclear. We collected 110 PD patients with a duration of PD for more than 3 months and studied the influence of PD duration and history of peritonitis on SIRT6 levels in PD effluents (PDEs). We also analyzed the relationship between SIRT6 levels in PDEs and transforming growth factor beta 1 (TGF-ß1), IL-6, PD duration, peritoneal function, PD ultrafiltration (UF), and glucose exposure. We extracted human peritoneal mesothelial cells (HPMCs) from PDEs and measured the protein and gene expression levels of SIRT6, E-cadherin, vimentin, and TGF-ß1 in these cells. Based on the clinical results, we used human peritoneal mesothelial cells lines (HMrSV5) to observe the changes in SIRT6 levels and mesothelial-to-mesenchymal transition (MMT) after intervention with PD fluid. By overexpressing and knocking down SIRT6 expression, we investigated the effect of SIRT6 expression on E-cadherin, vimentin, and TGF-ß1 expression to elucidate the role of SIRT6 in mesothelial-to-epithelial transition in PMCs. Results: (1) With the extension of PD duration, the influence of infection on SIRT6 levels in PDEs increased. Patients with the PD duration of more than 5 years and a history of peritonitis had the lowest SIRT6 levels. (2) SIRT6 levels in PDEs were negatively correlated with PD duration, total glucose exposure, TGF-ß1, IL-6 levels, and the dialysate-to-plasma ratio of creatinine (Cr4hD/P), but positively correlated with UF. This indicates that SIRT6 has a protective effect on the peritoneum. (3) The short-term group (PD ≤ 1 year) had higher SIRT6 and E-cadherin gene and protein levels than the mid-term group (1 year < PD ≤ 5 years) and long-term group (PD > 5 years) in PMCs, while vimentin and TGF-ß1 levels were lower in the mid-term group and long-term group. Patients with a history of peritonitis had lower SIRT6 and E-cadherin levels than those without such a history. (4) After 4.25% PD fluid intervention for HPMCs, longer intervention time resulted in lower SIRT6 levels. (5) Overexpressing SIRT6 can lead to increased E-cadherin expression and decreased vimentin and TGF-ß1 expression in HPMCs. Knocking down SIRT6 expression resulted in decreased E-cadherin expression and increased vimentin and TGF-ß1 expression in HPMCs. This indicates that SIRT6 expression can inhibit MMT in HPMCs, alleviate PF associated with PD, and have a protective effect on the peritoneum.


Assuntos
Células Epiteliais , Diálise Peritoneal , Peritônio , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Masculino , Peritônio/metabolismo , Peritônio/citologia , Pessoa de Meia-Idade , Feminino , Células Epiteliais/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta1/metabolismo , Vimentina/metabolismo , Idoso , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/etiologia , Caderinas/metabolismo , Adulto , Transição Epitelial-Mesenquimal
8.
J Leukoc Biol ; 114(6): 518-531, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37774493

RESUMO

Lysosomal compartments undergo extensive remodeling during dendritic cell (DC) activation to meet the dynamic functional requirements of DCs. Instead of being regarded as stationary and digestive organelles, recent studies have increasingly appreciated the versatile roles of lysosomes in regulating key aspects of DC biology. Lysosomes actively control DC motility by linking calcium efflux to the actomyosin contraction, while enhanced DC lysosomal membrane permeability contributes to the inflammasome activation. Besides, lysosomes provide a platform for the transduction of innate immune signaling and the intricate host-pathogen interplay. Lysosomes and lysosome-associated structures are also critically engaged in antigen presentation and cross-presentation processes, which are pivotal for the induction of antigen-specific adaptive immune response. Through the current review, we emphasize that lysosome targeting strategies serve as vital DC-based immunotherapies in fighting against tumor, infectious diseases, and autoinflammatory disorders.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Apresentação Cruzada , Transdução de Sinais , Lisossomos/metabolismo
9.
Cell Biosci ; 13(1): 156, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641145

RESUMO

Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained ß cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory ß cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.

10.
PLoS One ; 18(8): e0289552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535570

RESUMO

BACKGROUND: N7-methylguanosine (m7G) is one of the most common RNA posttranscriptional modifications; however, its potential role in hepatocellular carcinoma (HCC) remains unknown. We developed a prediction signature based on m7G-related long noncoding RNAs (lncRNAs) to predict HCC prognosis and provide a reference for immunotherapy and chemotherapy. METHODS: RNA-seq data from The Cancer Genome Atlas (TCGA) database and relevant clinical data were used. Univariate and multivariate Cox regression analyses were conducted to identify m7G-related lncRNAs with prognostic value to build a predictive signature. We evaluated the prognostic value and clinical relevance of this signature and explored the correlation between the predictive signature and the chemotherapy treatment response of HCC. Moreover, an in vitro study to validate the function of CASC19 was performed. RESULTS: Six m7G-related lncRNAs were identified to create a signature. This signature was considered an independent risk factor for the prognosis of patients with HCC. TIDE analyses showed that the high-risk group might be more sensitive to immunotherapy. ssGSEA indicated that the predictive signature was strongly related to the immune activities of HCC. HCC in high-risk patients was more sensitive to the common chemotherapy drugs bleomycin, doxorubicin, gemcitabine, and lenalidomide. In vitro knockdown of CASC19 inhibited the proliferation, migration and invasion of HCC cells. CONCLUSION: We established a 6 m7G-related lncRNA signature that may assist in predicting the prognosis and response to chemotherapy and immunotherapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , RNA Longo não Codificante/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Prognóstico , Imunoterapia
11.
Diabetes Metab Syndr Obes ; 16: 1669-1684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312900

RESUMO

Background: Increasing evidence suggests that immune modulation contributes to the pathogenesis and progression of diabetic nephropathy (DN). However, the role of immune modulation in DN has not been elucidated. The purpose of this study was to search for potential immune-related therapeutic targets and molecular mechanisms of DN. Methods: Gene expression datasets were obtained from the Gene Expression Omnibus (GEO) database. A total of 1793 immune-related genes were acquired from the Immunology Database and Analysis Portal (ImmPort). Weighted gene co-expression network analysis (WGCNA) was performed for GSE142025, and the red and turquoise co-expression modules were found to be key for DN progression. We utilized four machine learning algorithms, namely, random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), and k-nearest neighbor (KNN), to evaluate the diagnostic value of hub genes. Immune infiltration patterns were analyzed using the CIBERSORT algorithm, and the correlation between immune cell type abundance and hub gene expression was also investigated. Results: A total of 77 immune-related genes of advanced DN were selected for subsequent analyzes. Functional enrichment analysis showed that the regulation of cytokine-cytokine receptor interactions and immune cell function play a corresponding role in the progression of DN. The final 10 hub genes were identified through multiple datasets. In addition, the expression levels of the identified hub genes were corroborated through a rat model. The RF model exhibited the highest AUC. CIBERSORT analysis and single-cell sequencing analysis revealed changes in immune infiltration patterns between control subjects and DN patients. Several potential drugs to reverse the altered hub genes were identified through the Drug-Gene Interaction database (DGIdb). Conclusion: This pioneering work provided a novel immunological perspective on the progression of DN, identifying key immune-related genes and potential drug targets, thus stimulating future mechanistic research and therapeutic target identification for DN.

12.
Artigo em Inglês | MEDLINE | ID: mdl-37085277

RESUMO

INTRODUCTION: Diabetic lung disease is already known as one of the diabetes complications, but report on its therapeutic strategy is rare. The present study aimed to add novel therapeutic strategy for diabetic lung disease, to reveal the protective effect of ghrelin on diabetic lung disease both in vivo and in vitro, and to discuss its probable molecular mechanism. RESEARCH DESIGN AND METHODS: Diabetic mice and 16HBE cells were our research objects. We surveyed the effect of ghrelin on streptozotocin-induced lung tissue morphology changes by H&E staining. Furthermore, the changes of proinflammatory cytokines (interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α)) were detected by ELISA. To expound the molecular mechanism, we detected critical proteins of TLR4 pathway and observed their changes by immunohistochemistry (IHC), real-time PCR and western blot analysis in vivo and in vitro, respectively. RESULTS: The results of H&E staining showed that pathological alterations of the lung induced by hyperglycemia were ameliorated by ghrelin. The results of ELISA demonstrated that the elevated levels of IL-1ß and TNF-α induced by hyperglycemia turned to decrease in the lung after ghrelin treatment. In the results of IHC, real-time PCR and western blot analysis, we found that the TLR4 pathway was elevated by hyperglycemia or high glucose and is remarkably inhibited by the treatment of ghrelin both in vivo and in vitro. CONCLUSIONS: Ghrelin could inhibit inflammation of diabetic lung disease by regulating the TLR4 pathway. This study might affect research on diabetic lung disease, and the therapeutic potential of ghrelin for diabetic lung disease is worth considering.


Assuntos
Diabetes Mellitus Experimental , Grelina , Hiperglicemia , Pneumopatias , Receptor 4 Toll-Like , Animais , Humanos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Grelina/farmacologia , Grelina/uso terapêutico , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Pneumopatias/patologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
13.
Transl Cancer Res ; 12(3): 595-604, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37033361

RESUMO

Background: Endometrial carcinoma (EC) is one of the most common gynecological malignancies and has become more prevalent in recent decades. The clinical manifestations and characteristics of EC in premenopausal and postmenopausal women differ and present with distinct pathological stages and subtypes of EC. Surgery remains the principal therapeutic approach, but the postoperative prognosis is largely affected by the pathological state. Methods: A retrospective study was conducted on 216 patients with EC who were hospitalized from August 2008 to August 2019 in Wuhan Union Hospital. The patients were divided into 2 groups based on the pre- or postmenopausal occurrence of EC. The general clinical characteristics, intraoperative situation, clinicopathological data, and postoperative outcomes of the 2 groups were compared. Results: Patients with premenopausal EC had earlier menarche, a higher incidence of primary infertility and anemia, and fewer pregnancies and deliveries. Patients with postmenopausal EC were older and often had hyperlipidemia and diabetes. Additionally, patients who were postmenopausal had worse tumor pathological gradings, more severe muscular invasion, and a higher rate of lymphatic metastasis. These factors led to a higher demand for postoperative radiotherapy in patients but a lower survival rate. Conclusions: Generally, premenopausal EC differs from postmenopausal EC: the latter is more malignant and has a worse prognosis.

14.
PLoS One ; 18(2): e0279744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795724

RESUMO

BACKGROUND: Necroptosis is a necrotic programmed cell death with potent immunogenicity. Due to the dual effects of necroptosis on tumor growth, metastasis and immunosuppression, we evaluated the prognostic value of necroptosis-related genes (NRGs) in hepatocellular carcinoma (HCC). METHODS: We first analyzed RNA sequencing and clinical HCC patient data obtained to develop an NRG prognostic signature based on the TCGA dataset. Differentially expressed NRGs were further evaluated by GO and KEGG pathway analyses. Next, we conducted univariate and multivariate Cox regression analyses to build a prognostic model. We also used the dataset obtained from the International Cancer Genome Consortium (ICGC) database to verify the signature. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to investigate the immunotherapy response. Furthermore, we investigated the relationship between the prediction signature and chemotherapy treatment response in HCC. RESULTS: We first identified 36 differentially expressed genes out of 159 NRGs in hepatocellular carcinoma. Enrichment analysis showed that they were mainly enriched in the necroptosis pathway. Four NRGs were screened by Cox regression analysis to establish a prognostic model. The survival analysis revealed that the overall survival of patients with high-risk scores was significantly shorter than that of patients with low-risk scores. The nomogram demonstrated satisfactory discrimination and calibration. The calibration curves validated a fine concordance between the nomogram prediction and actual observation. The efficacy of the necroptosis-related signature was also validated by an independent dataset and immunohistochemistry experiments. TIDE analysis revealed that patients in the high-risk group were possibly more susceptible to immunotherapy. Furthermore, high-risk patients were found to be more sensitive to conventional chemotherapeutic medicines such as bleomycin, bortezomib, and imatinib. CONCLUSION: We identified 4 necroptosis-related genes and established a prognostic risk model that could potentially predict prognosis and response to chemotherapy and immunotherapy in HCC patients in the future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Necroptose/genética , Neoplasias Hepáticas/genética , Nomogramas
15.
J Clin Invest ; 133(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36626227

RESUMO

The role of tumor-associated macrophages (TAMs), along with the regulatory mechanisms underlying distinct macrophage activation states, remains poorly understood in prostate cancer (PCa). Herein, we report that PCa growth in mice with macrophage-specific Ubc9 deficiency is substantially suppressed compared with that in wild-type littermates, an effect partially ascribed to the augmented CD8+ T cell response. Biochemical and molecular analyses revealed that signal transducer and activator of transcription 4 (STAT4) is a crucial UBC9-mediated SUMOylation target, with lysine residue 350 (K350) as the major modification site. Site-directed mutation of STAT4 (K350R) enhanced its nuclear translocation and stability, thereby facilitating the proinflammatory activation of macrophages. Importantly, administration of the UBC9 inhibitor 2-D08 promoted the antitumor effect of TAMs and increased the expression of PD-1 on CD8+ T cells, supporting a synergistic antitumor efficacy once it combined with the immune checkpoint blockade therapy. Together, our results demonstrate that ablation of UBC9 could reverse the immunosuppressive phenotype of TAMs by promoting STAT4-mediated macrophage activation and macrophage-CD8+ T cell crosstalk, which provides valuable insights to halt the pathogenic process of tumorigenesis.


Assuntos
Ativação de Macrófagos , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos , Ativação de Macrófagos/genética , Neoplasias da Próstata/genética , Microambiente Tumoral
16.
Int Health ; 15(4): 397-402, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36071547

RESUMO

BACKGROUND: During the coronavirus disease 2019 pandemic, a nucleic acid test is frequently conducted to identify positive cases. Compared with a hospital-based strategy, whole-community nucleic acid testing displays a unique advantage in rapid screening of a massive population. Yet a management plan to ensure ample and contamination-free sample collection is lacking.The objective of the current study was to establish an efficient operational mode of whole-community nucleic acid testing by management of a sample collection team and to provide a reference for joint prevention work to contain the spread of severe acute respiratory syndrome coronavirus 2. METHODS: The efficient operation of nucleic acid testing within the community was implemented by urgent setting up of sample collection teams, efficient allocation of medical supplies, optimization of management procedures and coordination among multiple working departments. RESULTS: A total of 21 585 nucleic acid samples were collected within 3 d, while no one was missed or experienced a cross infection. No falls, heatstroke, disputes or other adverse events occurred. CONCLUSIONS: Under the emergency setting of nucleic acid testing of a large population, a management system with orderly organization, clear division of responsibilities and standardized operational procedures should be formulated.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Pandemias
17.
Environ Toxicol ; 37(12): 2947-2956, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36063080

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a known regulator of autophagy in a range of cell types. Here, we investigated the role of LRRK2-associated autophagy during acute kidney injury (AKI) and its underlying mechanism(s) of action. Male mice aged 8-weeks were treated with the LRRK2 inhibitor MLi-2 and exposed to lipopolysaccharide (LPS) through intraperitoneal injection or ischemia-reperfusion (IR) surgery. Mice were sacrificed 12 or 24 h post-LPS injection or IR operation and blood was collected for serum creatinine measurements. Kidney cortical tissues were collected for western blot analysis of podocyte-specific markers and autophagy-associated proteins. Renal histopathology was observed through hematoxylin-eosin staining. For cell-based assays, immortalized mouse podocytes were silenced for LRRK2 through siRNA transfection and exposed to LPS or cobalt chloride. Changes in cell viability were investigated using cell counting kit-8, flow cytometry and MTT assays. Expression of podocyte-specific markers and autophagy-associated proteins were analyzed by western blotting. We observed an increase in LRRK2 expression at 12 h post-LPS injection and IR surgery that was accompanied by enhanced autophagy. At 24 h post-treatment, both LRRK2 expression and autophagy declined. Kidney injury was most pronounced in mice treated with MLi-2. Podocytes silenced for LRRK2 showed a loss of cell viability, decreased levels of podocyte-specific protein expression and a suppression of autophagy. Together, these data reveal the protective effects of LRRK2 during AKI through enhanced podocyte autophagy and cell viability.


Assuntos
Injúria Renal Aguda , Podócitos , Masculino , Camundongos , Animais , Podócitos/metabolismo , Podócitos/patologia , Leucina , Lipopolissacarídeos/farmacologia , Apoptose , Autofagia , Injúria Renal Aguda/metabolismo , Biomarcadores/metabolismo
18.
Biomed Res Int ; 2022: 1068962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993049

RESUMO

Macrophages are widely distributed in various tissues and organs. They not only participate in the regulation of innate and adaptive immune response, but also play an important role in tissue homeostasis. Dysregulation of macrophage function is closely related to the initiation, development and prognosis of multiple diseases, including infection and tumorigenesis. Forkhead box transcription factor O1 (FoxO1) is an important member among the forkhead box transcription factor family. Through directly binding to the promoter regions of downstream target genes, FoxO1 is implicated in cell proliferation, apoptosis, metabolic activities and other biological processes. In this review, we summarized the regulatory role of FoxO1 in macrophage phagocytosis, migration, differentiation and inflammatory activation. We also emphasized that macrophage reciprocally modulated FoxO1 activity via a post-translational modification (PTM) dominant manner.


Assuntos
Macrófagos , Transdução de Sinais , Apoptose/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Macrófagos/metabolismo
19.
Cell Immunol ; 379: 104590, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36030565

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease resulted from the unrestrained inflammatory attack towards the insulin-producing islet ß cells. Although the exact etiology underlying T1D remains elusive, viral infections, especially those specific strains of enterovirus, are acknowledged as a critical environmental cue involved in the early phase of disease initiation. Viral infections could either directly impede ß cell function, or elicit pathological autoinflammatory reactions for ß cell killing. Autoimmune responses are bolstered by a massive body of virus-derived exogenous pathogen-associated molecular patterns (PAMPs) and the presence of ß cell-derived damage-associated molecular patterns (DAMPs). In particular, the nucleic acid components and the downstream nucleic acid sensing pathways serve as the major effector mechanism. The endogenous retroviral RNA, mitochondrial DNA (mtDNA) and genomic fragments generated by stressed or dying ß cells induce host responses reminiscent of viral infection, a phenomenon termed as viral mimicry during the early stage of T1D development. Given that the interferon regulatory factors (IRFs) are considered as hub transcription factors to modulate immune responses relevant to viral infection, we thus sought to summarize the critical role of IRFs in T1D pathogenesis. We discuss with focus for the impact of IRFs on the sensitivity of ß cells to cytokine stimulation, the vulnerability of ß cells to viral infection/mimicry, and the intensity of immune response. Together, targeting certain IRF members, alone or together with other therapeutics, could be a promising strategy against T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Infecções por Enterovirus , Ácidos Nucleicos , Viroses , Diabetes Mellitus Tipo 1/patologia , Humanos , Fatores Reguladores de Interferon/genética , Moléculas com Motivos Associados a Patógenos
20.
Int Immunopharmacol ; 110: 108971, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777268

RESUMO

T Cell Immunoglobulin and Mucin Containing Protein-3 (TIM-3) is an important immune checkpoint protein that is expressed in Tregs and affects their function. However, the expression and role of TIM-3 in modulating regulatory T cells (Tregs) in lupus nephritis (LN) are still unknown. In this study, we found that the percentage of TIM-3+ cells among spleen lymphocytes, CD4+ T cells and Tregs was higher in MRL/lpr mice than in MpJ mice. TIM-3high CD4+ T cells and TIM-3high Tregs were mainly responsible for the increase. The percentage of Tregs in TIM-3high CD4+ T cells was lower than that in TIM-3low CD4+ T cells, and the expression of CTLA-4 and IL-10 was lower in TIM-3high Tregs than in the TIM-3low Tregs in MRL/lpr mice. Blockade of TIM-3 in vivo significantly increased the Treg population and the expression of CTLA-4 and IL-10 in Tregs, thus relieving the LN symptoms and pathology in MRL/lpr mice. Additionally, bioinformatics analysis indicated that TIM-3 regulates Treg cells in LN mainly through cytokine-cytokine receptor interactions, the PI3K-Akt signaling pathway, the T cell receptor signaling pathway, Th17 cell differentiation and the FoxO signaling pathway. Together, our study has demonstrated that TIM-3 regulates Tregs in LN and that overexpression of TIM-3 in CD4+ T cells and Tregs leads to Treg quantity and quality deficiency in MRL/lpr mice. Blockade of TIM-3 protects against LN by expanding Tregs and enhancing their suppressive capacity. Finally, TIM-3 might be a potential therapeutic target for the treatment of LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Antígeno CTLA-4/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Camundongos Endogâmicos MRL lpr , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA