Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113254, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858466

RESUMO

Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein. We quantify spread through intercellular connections by immunofluorescence microscopy and flow cytometry. One of the antibodies, BDBV223, specific to the membrane-proximal external region, induces virus accumulation at the plasma membrane. The inhibiting activity of BDBV223 depends on BST2/tetherin.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Antígeno 2 do Estroma da Médula Óssea , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Antígenos CD , Antígeno 2 do Estroma da Médula Óssea/imunologia , Ebolavirus/imunologia , Proteínas Ligadas por GPI , Doença pelo Vírus Ebola/virologia
2.
Nat Commun ; 14(1): 5603, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699929

RESUMO

Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct. Vaccination induced strong binding antibody responses, specific to the prefusion conformation of glycoprotein complex, which were significantly higher in the prefusion stabilized glycoprotein complex construct group and displayed strong Fc-mediated effects. However, Lassa virus-neutralizing antibody activity was detected in some but not all animals. Following the challenge with a lethal dose of the Lassa virus, all vaccinated animals were protected from death and severe disease. Although the definitive mechanism of protection is still unknown, and assessment of the cell-mediated immune response was not investigated in this study, these data demonstrate the promise of mRNA as a vaccine platform against the Lassa virus and that protection against Lassa virus can be achieved in the absence of virus-neutralizing antibodies.


Assuntos
Arenaviridae , Vírus Lassa , Humanos , Cobaias , Animais , Vírus Lassa/genética , Anticorpos Neutralizantes , Vacinas de mRNA , Glicoproteínas
3.
Viruses ; 15(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36851566

RESUMO

The Marburg and Ebola filoviruses cause a severe, often fatal, disease in humans and nonhuman primates but have only subclinical effects in bats, including Egyptian rousettes, which are a natural reservoir of Marburg virus. A fundamental question is why these viruses are highly pathogenic in humans but fail to cause disease in bats. To address this question, we infected one cohort of Egyptian rousette bats with Marburg virus and another cohort with Ebola virus and harvested multiple tissues for mRNA expression analysis. While virus transcripts were found primarily in the liver, principal component analysis (PCA) revealed coordinated changes across multiple tissues. Gene signatures in kidney and liver pointed at induction of vasodilation, reduction in coagulation, and changes in the regulation of iron metabolism. Signatures of immune response detected in spleen and liver indicated a robust anti-inflammatory state signified by macrophages in the M2 state and an active T cell response. The evolutionary divergence between bats and humans of many responsive genes might provide a framework for understanding the differing outcomes upon infection by filoviruses. In this study, we outline multiple interconnected pathways that respond to infection by MARV and EBOV, providing insights into the complexity of the mechanisms that enable bats to resist the disease caused by filoviral infections. The results have the potential to aid in the development of new strategies to effectively mitigate and treat the disease caused by these viruses in humans.


Assuntos
Quirópteros , Ebolavirus , Infecções por Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Humanos , Animais , Doença pelo Vírus Ebola/veterinária , Ebolavirus/genética , Fígado , Marburgvirus/genética
4.
Cell Host Microbe ; 30(12): 1759-1772.e12, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36400021

RESUMO

The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.


Assuntos
Febre Lassa , Nanopartículas , Cobaias , Coelhos , Animais , Vírus Lassa/química , Anticorpos Neutralizantes , Febre Lassa/prevenção & controle , Glicoproteínas , Vacinas Sintéticas
5.
Nat Commun ; 13(1): 5814, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192374

RESUMO

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Assuntos
Anticorpos Biespecíficos , COVID-19 , Anticorpos de Cadeia Única , Animais , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Cricetinae , Humanos , Imunoglobulina G/genética , Camundongos , Testes de Neutralização , SARS-CoV-2/genética , Anticorpos de Cadeia Única/genética , Glicoproteína da Espícula de Coronavírus/genética
6.
Nat Commun ; 12(1): 6097, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671037

RESUMO

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Monoclonais/farmacocinética , Antivirais/farmacocinética , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Pulmão/metabolismo , Pulmão/virologia , Macaca fascicularis , Masculino , Mesocricetus , Camundongos , Camundongos Transgênicos , SARS-CoV-2/isolamento & purificação , Distribuição Tecidual , Carga Viral
7.
NPJ Vaccines ; 6(1): 91, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294728

RESUMO

The development of effective countermeasures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent responsible for the COVID-19 pandemic, is a priority. We designed and produced ConVac, a replication-competent vesicular stomatitis virus (VSV) vaccine vector that expresses the S1 subunit of SARS-CoV-2 spike protein. We used golden Syrian hamsters as animal models of severe COVID-19 to test the efficacy of the ConVac vaccine. A single vaccine dose elicited high levels of SARS-CoV-2 specific binding and neutralizing antibodies; following intranasal challenge with SARS-CoV-2, animals were protected from weight loss and viral replication in the lungs. No enhanced pathology was observed in vaccinated animals upon challenge, but some inflammation was still detected. The data indicate rapid control of SARS-CoV-2 replication by the S1-based VSV-vectored SARS-CoV-2 ConVac vaccine.

9.
Cell Rep ; 35(5): 109086, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951434

RESUMO

New World hantaviruses (NWHs) are endemic in North and South America and cause hantavirus cardiopulmonary syndrome (HCPS), with a case fatality rate of up to 40%. Knowledge of the natural humoral immune response to NWH infection is limited. Here, we describe human monoclonal antibodies (mAbs) isolated from individuals previously infected with Sin Nombre virus (SNV) or Andes virus (ANDV). Most SNV-reactive antibodies show broad recognition and cross-neutralization of both New and Old World hantaviruses, while many ANDV-reactive antibodies show activity for ANDV only. mAbs ANDV-44 and SNV-53 compete for binding to a distinct site on the ANDV surface glycoprotein and show potently neutralizing activity to New and Old World hantaviruses. Four mAbs show therapeutic efficacy at clinically relevant doses in hamsters. These studies reveal a convergent and potently neutralizing human antibody response to NWHs and suggest therapeutic potential for human mAbs against HCPS.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por Hantavirus/genética , Orthohantavírus/patogenicidade , Animais , Cricetinae , Infecções por Hantavirus/mortalidade , Humanos , Análise de Sobrevida
10.
PLoS Pathog ; 17(3): e1009383, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765062

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19 , Vírus da Raiva/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Humanos , Mesocricetus
11.
Cell Rep ; 32(7): 108028, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814037

RESUMO

Ebola virus (EBOV) causes a severe, often fatal disease in humans and nonhuman primates. Within the past decade, EBOV has caused two large and difficult-to-control outbreaks, one of which recently ended in the Democratic Republic of the Congo. Bats are the likely reservoir of EBOV, but little is known of their relationship with the virus. We perform serial passages of EBOV in human and bat cells and use circular sequencing to compare the short-term evolution of the virus. Virus populations passaged in bat cells have sequence markers indicative of host RNA editing enzyme activity, including evidence for ADAR editing of the EBOV glycoprotein. Multiple regions in the EBOV genome appear to have undergone adaptive evolution when passaged in bat and human cells. Individual mutated viruses are rescued and characterized. Our results provide insight into the host species-specific evolution of EBOV and highlight the adaptive flexibility of the virus.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/diagnóstico , Replicação Viral/genética , Animais , Quirópteros , Humanos
12.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852785

RESUMO

The question as to whether RNA viruses produce bona fide microRNAs (miRNAs) during infection has been the focus of intense research and debate. Recently, several groups using computational prediction methods have independently reported possible miRNA candidates produced by Ebola virus (EBOV). Additionally, efforts to detect these predicted RNA products in samples from infected animals and humans have produced positive results. However, these studies and their conclusions are predicated on the assumption that these RNA products are actually processed through, and function within, the miRNA pathway. In the present study, we performed the first rigorous assessment of the ability of filoviruses to produce miRNA products during infection of both human and bat cells. Using next-generation sequencing, we detected several candidate miRNAs from both EBOV and the closely related Marburg virus (MARV). Focusing our validation efforts on EBOV, we found evidence contrary to the idea that these small RNA products function as miRNAs. The results of our study are important because they highlight the potential pitfalls of relying on computational methods alone for virus miRNA discovery.IMPORTANCE Here, we report the discovery, via deep sequencing, of numerous noncoding RNAs (ncRNAs) derived from both EBOV and MARV during infection of both bat and human cell lines. In addition to identifying several novel ncRNAs from both viruses, we identified two EBOV ncRNAs in our sequencing data that were near-matches to computationally predicted viral miRNAs reported in the literature. Using molecular and immunological techniques, we assessed the potential of EBOV ncRNAs to function as viral miRNAs. Importantly, we found little evidence supporting this hypothesis. Our work is significant because it represents the first rigorous assessment of the potential for EBOV to encode viral miRNAs and provides evidence contrary to the existing paradigm regarding the biological role of computationally predicted EBOV ncRNAs. Moreover, our work highlights further avenues of research regarding the nature and function of EBOV ncRNAs.


Assuntos
Ebolavirus/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , RNA Viral/metabolismo , Animais , Linhagem Celular , Quirópteros , Ebolavirus/genética , Humanos , Marburgvirus/genética , Marburgvirus/metabolismo , MicroRNAs/genética , RNA Viral/genética
13.
Microb Ecol ; 69(1): 59-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25052383

RESUMO

Indigenous bacterial assemblages with putative hydrocarbon-degrading capabilities were isolated, characterized and screened for the presence of the catechol-2,3-dioxygenase (C23O) gene after exposure to toluene in two different (i.e., pristine and conditioned) soil communities. The indigenous bacterial populations were exposed to the hydrocarbon substrate by the addition of toluene concentrations, ranging from 0.5 % to 10 % V/W in 10 g of each soil and incubated at 30 °C for upwards of 12 days. In total, 25 isolates (11 in pristine soil and 14 in conditioned soil) were phenotypically characterized according to standard microbiological methods and also screened for the 238-bp C23O gene fragment. Additionally, 16S rRNA analysis of the isolates identified some of them as belonging to the genera Bacillus, Exiguobacterium, Enterobacter, Pseudomonas and Stenotrophomonas. Furthermore, the two clone libraries that were constructed from these toluene-contaminated soils also revealed somewhat disparate phylotypes (i.e., 70 % Actinobacteria and Firmicutes to 30 % Proteobacteria in conditioned soil, whereas in pristine soil: 66 % Actinobacteria and Firmicutes; 21 % Proteobacteria and 13 % Bacteroidetes). The differences observed in bacterial phylotypes between these two soil communities may probably be associated with previous exposure to hydrocarbon sources by indigenous populations in the conditioned soil as compared to the pristine soil.


Assuntos
Catecol 2,3-Dioxigenase/metabolismo , Actinobacteria/classificação , Actinobacteria/enzimologia , Actinobacteria/genética , Bacillus/classificação , Bacillus/enzimologia , Bacillus/genética , Biodegradação Ambiental , Catecol 2,3-Dioxigenase/genética , Proteobactérias/classificação , Proteobactérias/enzimologia , Proteobactérias/genética , Pseudomonas/classificação , Pseudomonas/enzimologia , Pseudomonas/genética , RNA Ribossômico 16S/genética , Microbiologia do Solo , Tolueno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA