Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(4): e25611, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38625816

RESUMO

A core component of the avian pallial cognitive network is the multimodal nidopallium caudolaterale (NCL) that is considered to be analogous to the mammalian prefrontal cortex (PFC). The NCL plays a key role in a multitude of executive tasks such as working memory, decision-making during navigation, and extinction learning in complex learning environments. Like the PFC, the NCL is positioned at the transition from ascending sensory to descending motor systems. For the latter, it sends descending premotor projections to the intermediate arcopallium (AI) and the medial striatum (MSt). To gain detailed insight into the organization of these projections, we conducted several retrograde and anterograde tracing experiments. First, we tested whether NCL neurons projecting to AI (NCLarco neurons) and MSt (NCLMSt neurons) are constituted by a single neuronal population with bifurcating neurons, or whether they form two distinct populations. Here, we found two distinct projection patterns to both target areas that were associated with different morphologies. Second, we revealed a weak topographic projection toward the medial and lateral striatum and a strong topographic projection toward AI with clearly distinguishable sensory termination fields. Third, we investigated the relationship between the descending NCL pathways to the arcopallium with those from the hyperpallium apicale, which harbors a second major descending pathway of the avian pallium. We embed our findings within a system of parallel pallio-motor loops that carry information from separate sensory modalities to different subpallial systems. Our results also provide insights into the evolution of the avian motor system from which, possibly, the song system has emerged.


Assuntos
Encéfalo , Columbidae , Animais , Columbidae/fisiologia , Córtex Cerebral/fisiologia , Corpo Estriado , Neostriado/fisiologia , Mamíferos
2.
J Comp Neurol ; 531(7): 790-813, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808394

RESUMO

The current study aimed to reveal in detail patterns of intrahippocampal connectivity in homing pigeons (Columba livia). In light of recent physiological evidence suggesting differences between dorsomedial and ventrolateral hippocampal regions and a hitherto unknown laminar organization along the transverse axis, we also aimed to gain a higher-resolution understanding of the proposed pathway segregation. Both in vivo and high-resolution in vitro tracing techniques were employed and revealed a complex connectivity pattern along the subdivisions of the avian hippocampus. We uncovered connectivity pathways along the transverse axis that started in the dorsolateral hippocampus and continued to the dorsomedial subdivision, from where information was relayed to the triangular region either directly or indirectly via the V-shaped layers. The often-reciprocal connectivity along these subdivisions displayed an intriguing topographical arrangement such that two parallel pathways could be discerned along the ventrolateral (deep) and dorsomedial (superficial) aspects of the avian hippocampus. The segregation along the transverse axis was further supported by expression patterns of the glial fibrillary acidic protein and calbindin. Moreover, we found strong expression of Ca2+ /calmodulin-dependent kinase IIα and doublecortin in the lateral but not medial V-shape layer, indicating a difference between the two V-shaped layers. Overall, our findings provide an unprecedented, detailed description of avian intrahippocampal pathway connectivity, and confirm the recently proposed segregation of the avian hippocampus along the transverse axis. We also provide further support for the hypothesized homology of the lateral V-shape layer and the dorsomedial hippocampus with the dentate gyrus and Ammon's horn of mammals, respectively.


Assuntos
Columbidae , Neurônios , Animais , Columbidae/metabolismo , Neurônios/metabolismo , Mamíferos , Calbindinas/metabolismo , Hipocampo/metabolismo
3.
Neurosci Lett ; 789: 136869, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100042

RESUMO

Migrating birds have developed remarkable navigational capabilities to successfully master biannual journeys between their breeding and wintering grounds. To reach their intended destination, they need to calculate navigational goals from a large variety of natural directional and positional cues to set a meaningful motor output command. One brain area, which has been associated with such executive functions, is the nidopallium caudolaterale (NCL), which, due to its striking similarities in terms of neurochemistry, connectivity and function, is considered analogous to the mammalian prefrontal cortex. To establish a baseline for further analyses elucidating the neuronal correlates underlying avian navigation, we performed quantitative and qualitative analyses of dopaminergic fibres in the brains of long-distance night-migratory Eurasian blackcaps (Sylvia atricapilla). We identified four regions in the caudal telencephalon, each of which was characterized by its specific dopaminergic innervation pattern. At least three of them presumably constitute subareas of the NCL in Eurasian blackcaps and could thus be involved in integrating navigational input from different sensory systems. The observed heterogeneity and parcellation of the NCL subcompartments in this migratory species could be a consequence of the special demands related to navigation.


Assuntos
Passeriformes , Animais , Encéfalo , Dopamina , Mamíferos , Passeriformes/fisiologia , Córtex Pré-Frontal/fisiologia , Estações do Ano , Telencéfalo
4.
iScience ; 24(10): 103195, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34703993

RESUMO

Multi-component behavior is a form of goal-directed behavior that depends on the ability to execute various responses in a precise temporal order. Even though this function is vital for any species, little is known about how non-mammalian species accomplish such behavior and what the underlying neural mechanisms are. We show that humans and a non-mammalian species (pigeons) perform equally well in multi-component behavior and provide a validated experimental approach useful for cross-species comparisons. Applying molecular imaging methods, we identified brain regions most important for the examined behavioral dynamics in pigeons. Especially activity in the nidopallium intermedium medialis pars laterale (NIML) was specific to multi-component behavior since only activity in NIML was predictive for behavioral efficiency. The data suggest that NIML is important for hierarchical processing during goal-directed behavior and shares functional characteristics with the human inferior frontal gyrus in multi-component behavior.

5.
Commun Biol ; 4(1): 100, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483632

RESUMO

Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons' contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds.


Assuntos
Channelrhodopsins/metabolismo , Columbidae/genética , Dependovirus , Optogenética , Telencéfalo/metabolismo , Animais
6.
Sci Rep ; 11(1): 1142, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441947

RESUMO

The neural basis of emotional processing has been largely investigated in constrained spatial environments such as stationary EEGs or fMRI scanners using highly artificial stimuli like standardized pictures depicting emotional scenes. Typically, such standardized experiments have low ecological validity and it remains unclear whether their results reflect neuronal processing in real-life affective situations at all. Critically, emotional situations do not only encompass the perception of emotions, but also behavioral components associated with them. In this study, we aimed to investigate real-life emotions by recording couples in their homes using mobile EEG technology during embracing, kissing and emotional speech. We focused on asymmetries in affective processing as emotions have been demonstrated to be strongly lateralized in the brain. We found higher alpha and beta power asymmetry during kissing and embracing on frontal electrodes during emotional kisses and speech compared to a neutral control condition indicative of stronger left-hemispheric activation. In contrast, we found lower alpha power asymmetry at parieto-occipital electrode sites in the emotional compared to the neutral condition indicative of stronger right-hemispheric activation. Our findings for alpha power asymmetries are in line with models of emotional lateralization that postulate a valence-specific processing over frontal cortices and right-hemispheric dominance in emotional processing in parieto-occipital regions. In contrast, beta power asymmetries pointed more towards valence-specific processing indicating that, while alpha and beta frequencies seem to be functionally associated, they are not reflecting identical cognitive processing.


Assuntos
Encéfalo/fisiologia , Emoções , Adulto , Corte , Eletroencefalografia , Feminino , Humanos , Amor , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Adulto Jovem
7.
Science ; 369(6511)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973004

RESUMO

Although the avian pallium seems to lack an organization akin to that of the cerebral cortex, birds exhibit extraordinary cognitive skills that are comparable to those of mammals. We analyzed the fiber architecture of the avian pallium with three-dimensional polarized light imaging and subsequently reconstructed local and associative pallial circuits with tracing techniques. We discovered an iteratively repeated, column-like neuronal circuitry across the layer-like nuclear boundaries of the hyperpallium and the sensory dorsal ventricular ridge. These circuits are connected to neighboring columns and, via tangential layer-like connections, to higher associative and motor areas. Our findings indicate that this avian canonical circuitry is similar to its mammalian counterpart and might constitute the structural basis of neuronal computation.


Assuntos
Columbidae/anatomia & histologia , Neocórtex/ultraestrutura , Vias Neurais/ultraestrutura , Prosencéfalo/ultraestrutura , Estrigiformes/anatomia & histologia , Idoso de 80 Anos ou mais , Animais , Evolução Biológica , Chlorocebus aethiops , Feminino , Humanos , Masculino , Ratos
8.
Sci Rep ; 10(1): 11483, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641702

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
J Chem Neuroanat ; 109: 101851, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717392

RESUMO

In the current study, we use tyrosine hydroxylase (TH) immunohistochemistry to detail the nuclear parcellation and cellular morphology of neurons belonging to the catecholaminergic system in the brain of the Nile crocodile. In general, our results are similar to that found in another crocodilian (the spectacled caiman) and indeed other vertebrates, but certain differences of both evolutionary and functional significance were noted. TH immunopositive (TH+) neurons forming distinct nuclei were observed in the olfactory bulb (A16), hypothalamus (A11, A13-15), midbrain (A8-A10), pons (A5-A7) and medulla oblongata (area postrema, C1, C2, A1, A2), encompassing the more commonly observed nuclear complexes of this system across vertebrates. In addition, TH + neurons forming distinct nuclei not commonly identified in vertebrates were observed in the anterior olfactory nucleus, the pretectal nuclear complex, adjacent to the posterior commissure, and within nucleus laminaris, nucleus magnocellularis lateralis and the lateral vestibular nucleus. Palely stained TH + neurons were observed in some of the serotonergic nuclei, including the medial and lateral divisions of the superior raphe nucleus and the inferior raphe and inferior reticular nucleus, but not in other serotonergic nuclei. In birds, a high density of TH + fibres and pericellular baskets in the dorsal ventricular ridge marks the location of the nidopallium caudolaterale (NCL), a putative avian analogue of mammalian prefrontal cortex. In the dorsal ventricular ridge (DVR) of the crocodile a small region in the caudolateral anterior DVR (ADVRcl) revealed a slightly higher density of TH + fibres and some pericellular baskets (formed by only few TH + fibres). These results are discussed in an evolutionary and functional framework.


Assuntos
Encéfalo/metabolismo , Núcleo Celular/metabolismo , Globo Pálido/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Jacarés e Crocodilos , Animais , Encéfalo/citologia , Forma Celular/fisiologia , Globo Pálido/citologia , Imuno-Histoquímica , Rede Nervosa/citologia , Neurônios/citologia
10.
Sci Rep ; 10(1): 384, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941919

RESUMO

The ability to execute different responses in an expedient temporal order is central for efficient goal-directed actions and often referred to as multi-component behaviour. However, the underlying neural mechanisms on a cellular level remain unclear. Here we establish a link between neural activity at the cellular level within functional neuroanatomical structures to this form of goal-directed behaviour by analyzing immediate early gene (IEG) expression in an animal model, the pigeon (Columba livia). We focus on the group of zif268 IEGs and ZENK in particular. We show that when birds have to cascade separate task goals, ZENK expression is increased in the avian equivalent of the mammalian prefrontal cortex, i.e. the nidopallium caudolaterale (NCL) as well as in the homologous striatum. Moreover, in the NCL as well as in the medial striatum (MSt), the degree of ZENK expression was highly correlated with the efficiency of multi-component behaviour. The results provide the first link between cellular IEG expression and behavioural outcome in multitasking situations. Moreover, the data suggest that the function of the fronto-striatal circuitry is comparable across species indicating that there is limited flexibility in the implementation of complex cognition such as multi-component behaviour within functional neuroanatomical structures.


Assuntos
Comportamento Animal , Columbidae/metabolismo , Corpo Estriado/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Columbidae/genética , Modelos Psicológicos
11.
Psychol Res ; 83(1): 26-36, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29349505

RESUMO

Humans are highly social animals that show a wide variety of verbal and non-verbal behaviours to communicate social intent. One of the most frequently used non-verbal social behaviours is embracing, commonly used as an expression of love and affection. However, it can also occur in a large variety of social situations entailing negative (fear or sadness) or neutral emotionality (formal greetings). Embracing is also experienced from birth onwards in mother-infant interactions and is thus accompanying human social interaction across the whole lifespan. Despite the importance of embraces for human social interactions, their underlying neurophysiology is unknown. Here, we demonstrated in a well-powered sample of more than 2500 adults that humans show a significant rightward bias during embracing. Additionally, we showed that this general motor preference is strongly modulated by emotional contexts: the induction of positive or negative affect shifted the rightward bias significantly to the left, indicating a stronger involvement of right-hemispheric neural networks during emotional embraces. In a second laboratory study, we were able to replicate both of these findings and furthermore demonstrated that the motor preferences during embracing correlate with handedness. Our studies therefore not only show that embracing is controlled by an interaction of motor and affective networks, they also demonstrate that emotional factors seem to activate right-hemispheric systems in valence-invariant ways.


Assuntos
Emoções/fisiologia , Lateralidade Funcional/fisiologia , Relações Interpessoais , Adulto , Afeto , Feminino , França , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Comportamento Social , Adulto Jovem
12.
Neurosci Biobehav Rev ; 95: 353-360, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30339836

RESUMO

Social touch is an important aspect of human social interaction - across all cultures, humans engage in kissing, cradling and embracing. These behaviors are necessarily asymmetric, but the factors that determine their lateralization are not well-understood. Because the hands are often involved in social touch, motor preferences may give rise to asymmetric behavior. However, social touch often occurs in emotional contexts, suggesting that biases might be modulated by asymmetries in emotional processing. Social touch may therefore provide unique insights into lateralized brain networks that link emotion and action. Here, we review the literature on lateralization of cradling, kissing and embracing with respect to motor and emotive bias theories. Lateral biases in all three forms of social touch are influenced, but not fully determined by handedness. Thus, motor bias theory partly explains side biases in social touch. However, emotional context also affects side biases, most strongly for embracing. Taken together, literature analysis reveals that side biases in social touch are most likely determined by a combination of motor and emotive biases.


Assuntos
Emoções , Lateralidade Funcional , Atividade Motora , Comportamento Social , Tato , Emoções/fisiologia , Humanos , Modelos Neurológicos , Modelos Psicológicos , Atividade Motora/fisiologia , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA