Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Commun ; 11(1): 3190, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581280

RESUMO

Epitaxial films may be released from growth substrates and transferred to structurally and chemically incompatible substrates, but epitaxial films of transition metal perovskite oxides have not been transferred to electroactive substrates for voltage control of their myriad functional properties. Here we demonstrate good strain transmission at the incoherent interface between a strain-released film of epitaxially grown ferromagnetic La0.7Sr0.3MnO3 and an electroactive substrate of ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 in a different crystallographic orientation. Our strain-mediated magnetoelectric coupling compares well with respect to epitaxial heterostructures, where the epitaxy responsible for strong coupling can degrade film magnetization via strain and dislocations. Moreover, the electrical switching of magnetic anisotropy is repeatable and non-volatile. High-resolution magnetic vector maps reveal that micromagnetic behaviour is governed by electrically controlled strain and cracks in the film. Our demonstration should inspire others to control the physical/chemical properties in strain-released epitaxial oxide films by using electroactive substrates to impart strain via non-epitaxial interfaces.

2.
Sci Adv ; 5(1): eaau0906, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30746444

RESUMO

Similar to silicon-based semiconductor devices, van der Waals heterostructures require integration with high-k oxides. Here, we demonstrate a method to embed and pattern a multifunctional few-nanometer-thick high-k oxide within various van der Waals devices without degrading the properties of the neighboring two-dimensional materials. This transformation allows for the creation of several fundamental nanoelectronic and optoelectronic devices, including flexible Schottky barrier field-effect transistors, dual-gated graphene transistors, and vertical light-emitting/detecting tunneling transistors. Furthermore, upon dielectric breakdown, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching memories. This nondestructive embedding of a high-k oxide within complex van der Waals heterostructures could play an important role in future flexible multifunctional van der Waals devices.

3.
Nat Commun ; 9(1): 3597, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185818

RESUMO

Twin boundary defects form in virtually all crystalline materials as part of their response to applied deformation or thermal stress. For nearly six decades, graphite has been used as a textbook example of twinning with illustrations showing atomically sharp interfaces between parent and twin. Using state-of-the-art high-resolution annular dark-field scanning transmission electron microscopy, we have captured atomic resolution images of graphitic twin boundaries and find that these interfaces are far more complex than previously supposed. Density functional theory calculations confirm that the presence of van der Waals bonding eliminates the requirement for an atomically sharp interface, resulting in long-range bending across multiple unit cells. We show these remarkable structures are common to other van der Waals materials, leading to extraordinary microstructures, Raman-active stacking faults, and sub-surface exfoliation within bulk crystals.

4.
Nature ; 558(7710): 420-424, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925968

RESUMO

Gas permeation through nanoscale pores is ubiquitous in nature and has an important role in many technologies1,2. Because the pore size is typically smaller than the mean free path of gas molecules, the flow of the gas molecules is conventionally described by Knudsen theory, which assumes diffuse reflection (random-angle scattering) at confining walls3-7. This assumption holds surprisingly well in experiments, with only a few cases of partially specular (mirror-like) reflection known5,8-11. Here we report gas transport through ångström-scale channels with atomically flat walls12,13 and show that surface scattering can be either diffuse or specular, depending on the fine details of the atomic landscape of the surface, and that quantum effects contribute to the specularity at room temperature. The channels, made from graphene or boron nitride, allow helium gas flow that is orders of magnitude faster than expected from theory. This is explained by specular surface scattering, which leads to ballistic transport and frictionless gas flow. Similar channels, but with molybdenum disulfide walls, exhibit much slower permeation that remains well described by Knudsen diffusion. We attribute the difference to the larger atomic corrugations at molybdenum disulfide surfaces, which are similar in height to the size of the atoms being transported and their de Broglie wavelength. The importance of this matter-wave contribution is corroborated by the observation of a reversed isotope effect, whereby the mass flow of hydrogen is notably higher than that of deuterium, in contrast to the relation expected for classical flows. Our results provide insights into the atomistic details of molecular permeation, which previously could be accessed only in simulations10,14, and demonstrate the possibility of studying gas transport under controlled confinement comparable in size to the quantum-mechanical size of atoms.

5.
Nature ; 538(7624): 222-225, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27602512

RESUMO

Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

6.
Nano Lett ; 15(12): 8223-8, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26555037

RESUMO

Monolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for optoelectronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2- and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications. Here we compare MoSe2 and WSe2 LEQWs. We show that the EQE of WSe2 devices grows with temperature, with room temperature EQE reaching 5%, which is 250× more than the previous best performance of MoS2 and MoSe2 quantum wells in ambient conditions. We attribute such different temperature dependences to the inverted sign of spin-orbit splitting of conduction band states in tungsten and molybdenum dichalcogenides, which makes the lowest-energy exciton in WSe2 dark.

7.
Nano Lett ; 15(8): 4914-21, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26132110

RESUMO

Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.

8.
Nat Mater ; 14(3): 301-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643033

RESUMO

The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices and so on. Here, we take the complexity and functionality of such van der Waals heterostructures to the next level by introducing quantum wells (QWs) engineered with one atomic plane precision. We describe light-emitting diodes (LEDs) made by stacking metallic graphene, insulating hexagonal boron nitride and various semiconducting monolayers into complex but carefully designed sequences. Our first devices already exhibit an extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a wide range of frequencies by appropriately choosing and combining 2D semiconductors (monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and transparent substrates, we show that they can also provide the basis for flexible and semi-transparent electronics. The range of functionalities for the demonstrated heterostructures is expected to grow further on increasing the number of available 2D crystals and improving their electronic quality.

9.
Nano Lett ; 14(7): 3987-92, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24871927

RESUMO

The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one stack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in device fabrication.


Assuntos
Grafite/química , Tinta , Nanopartículas/química , Nanoestruturas/química , Eletrônica/instrumentação , Desenho de Equipamento , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Impressão/instrumentação
10.
Genome Dyn ; 7: 170-96, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22759819

RESUMO

For quite some time, scientists have wondered how multigene families come into existence. Over the last several decades, a number of genomic and evolutionary mechanisms have been discovered that shape the evolution, structure and organization of multigene families. While gene duplication represents the core process, other phenomena such as pseudogene formation, gene loss, recombination and natural selection have been found to act in varying degrees to shape the evolution of gene families. How these forces influence the fate of gene duplicates has ultimately led molecular evolutionary biologists to ask the question: How and why do some duplicates gain new functions, whereas others deteriorate into pseudogenes or even get deleted from the genome? What ultimately lies at the heart of this question is the desire to understand how multigene families originate and diversify. The birth-and-death model of multigene family evolution provides a framework to answer this question. However, the growing availability of molecular data has revealed a much more complex scenario in which the birth-and-death process interacts with different mechanisms, leading to evolutionary novelty that can be exploited by a species as means for adaptation to various selective challenges. Here we provide an up-to-date review into the role of the birth-and-death model and the relevance of its interaction with forces such as genomic drift, selection and concerted evolution in generating and driving the evolution of different archetypal multigene families. We discuss the scientific evidence supporting the notion of birth-and-death as the major mechanism guiding the long-term evolution of multigene families.


Assuntos
Duplicação Gênica , Genoma , Modelos Genéticos , Família Multigênica , Adaptação Biológica , Animais , Evolução Biológica , Proteínas de Peixes/genética , Genes de Insetos , Deriva Genética , Humanos , Filogenia , Pseudogenes , Seleção Genética , Deleção de Sequência
11.
J Mol Evol ; 57(1): 110-29, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12962311

RESUMO

Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this "three-finger toxin toolkit" will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.


Assuntos
Venenos Elapídicos/genética , Evolução Molecular , Filogenia , Sequência de Aminoácidos , Animais , Sequência Consenso , Dados de Sequência Molecular , Família Multigênica , Alinhamento de Sequência , Relação Estrutura-Atividade
12.
Evolution ; 55(8): 1678-85, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11580027

RESUMO

Nucleotide sequence data from the mitochondrial control region were used from a phylogenetic context to investigate the long-term history of a population of bowhead whales (Balaena mysticetus). In addition, the coalescence time of these sequences was used to estimate the age of the inferred patterns of population size change. The results indicate that mitochondrial genetic polymorphism was not affected by a recent bottleneck that occurred near the turn of the 20th century, thereby preserving the signature of historical population size change in the mitochondrial genome. Further analysis showed that this population underwent an expansion initiated in the Middle to Late Pleistocene. As such, early Holocene changes in Arctic sea ice distribution appear to have had little influence on patterns of genetic variability in this population.


Assuntos
Polimorfismo Genético , Densidade Demográfica , Baleias/genética , Animais , DNA Mitocondrial/análise , Evolução Molecular , Feminino , Haplótipos , Região de Controle de Locus Gênico/genética , Filogenia , Análise de Sequência de DNA , Baleias/classificação
14.
J Hered ; 91(3): 198-204, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10833044

RESUMO

The class I and II major histocompatibility complex (MHC) genes are apparently subject to evolution by a birth-and-death process. The rate of gene turnover is much slower in the latter genes than in the former. In placental mammals, the class II region can be subdivided into different orthologous subregions or gene clusters (DR, DQ, DO, and DN), but the origins and evolutionary relationships of these gene clusters are not well established. Here we report the results of our study of the times of origin and evolutionary relationships of these gene clusters in mammals. Our analysis suggests that both class II alpha-chain and beta-chain gene clusters are shared by placental mammals and marsupials, but the gene clusters from nonmammalian species are paralogous to mammalian gene clusters. We estimated the times of divergence between gene clusters in placental mammals using the linearized tree and distance regression methods. Our results indicate that most gene clusters originated 170-200 million years (MY) ago, but that DO beta-chain genes diverged from the other beta-chain gene clusters approximately 210-260 MY ago. The phylogenetic trees for the alpha- and beta-chain genes were not congruent, suggesting that the evolutionary history of the class II gene clusters is more complex than previously thought.


Assuntos
Evolução Molecular , Variação Genética/genética , Antígenos de Histocompatibilidade Classe II/genética , Família Multigênica , Animais , Humanos , Mamíferos , Filogenia , Fatores de Tempo
15.
Mol Biol Evol ; 17(2): 278-83, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10677850

RESUMO

Protamines are small, highly basic DNA-binding proteins found in the sperm of animals. Interestingly, the proportion of arginine residues in one type of protamine, protamine P1, is about 50% in mammals. Upon closer examination, it was found that both the total number of amino acids and the positions of arginine residues have changed considerably during the course of mammalian evolution. This evolutionary pattern suggests that protamine P1 is under an unusual form of purifying selection, in which the high proportion of arginine residues is maintained but the positions may vary. In this case, we would expect that the rate of nonsynonymous substitution is not particularly low compared with that of synonymous substitution, despite purifying selection. We would also expect that the selection for a high arginine content results in a high frequency of the nucleotide G in the coding region of this gene, because all six arginine codons contain at least one G. These expectations were confirmed in our study of mammalian protamine genes. Analysis of nonmammalian vertebrate genes also showed essentially the same patterns of evolutionary changes, suggesting that this unusual form of purifying selection has been active since the origin of bony vertebrates. The protamine gene of an insect species shows similar patterns, although its purifying selection is less intense. These observations suggest that arginine-rich selection is a general feature of protamine evolution. The driving force for arginine-rich selection appears to be the DNA-binding function of protamine P1 and an interaction with a protein kinase in the fertilized egg.


Assuntos
Evolução Molecular , Mamíferos/genética , Filogenia , Protaminas/química , Protaminas/genética , Espermatozoides , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Masculino , Mamíferos/classificação , Marsupiais , Dados de Sequência Molecular , Monotremados , Primatas , Ruminantes , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
16.
J Mol Evol ; 49(5): 682-90, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10552049

RESUMO

A size-selected Balaena mysticetus genomic library was screened for clones containing simple sequence repeat, or microsatellite, loci. A total of 11 novel loci was identified. These loci were combined with a set of 9 published loci, for a total of 20 markers, and were scored across a sample of 108 bowhead whales from the Bering-Chukchi-Beaufort Seas population of bowhead whales. Genetic variability was measured in terms of polymorphism information content values and unbiased heterozygosity. From the latter, estimates of long-term effective population size were obtained. In addition, gametic phase disequilibrium among loci was investigated. Moderate to high levels of polymorphism were found overall, and the long-term effective size estimates were large relative to total population size. Tests of heterozygosity excess (Cornuet and Luikart 1996) and allele frequency distribution (Luikart et al. 1998) indicated that the possibility of a recent genetic bottleneck in the Bering-Chukchi-Beaufort Seas population of bowhead whales is highly unlikely. However, the fact that five loci displayed a statistically significant heterozygote deficiency remains to be explained.


Assuntos
Evolução Molecular , Baleias/genética , Animais , Sequência de Bases , Primers do DNA/genética , Variação Genética , Genética Populacional , Biblioteca Genômica , Repetições de Microssatélites , Polimorfismo Genético , Fatores de Tempo
17.
Proc Natl Acad Sci U S A ; 96(18): 10261-6, 1999 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-10468596

RESUMO

Insertion analysis of short and long interspersed elements is a powerful method for phylogenetic inference. In a previous study of short interspersed element data, it was found that cetaceans, hippopotamuses, and ruminants form a monophyletic group. To further resolve the relationships among these taxa, we now have isolated and characterized 10 additional loci. A phylogenetic analysis of these data was able to resolve relationships among the major cetartiodactyl groups, thereby shedding light on the origin of whales. The results indicated (i) that cetaceans are deeply nested within Artiodactyla, (ii) that cetaceans and hippopotamuses form a monophyletic group, (iii) that pigs and peccaries form a monophyletic group to the exclusion of hippopotamuses, (iv) that chevrotains diverged first among ruminants, and (v) that camels diverged first among cetartiodactyls. These findings lead us to conclude that cetaceans evolved from an immediate artiodactyl, not mesonychian, ancestor.


Assuntos
Artiodáctilos/classificação , Artiodáctilos/genética , Evolução Molecular , Sequências Repetitivas Dispersas/genética , Mamíferos/classificação , Filogenia , Baleias/classificação , Baleias/genética , Animais , Sequência de Bases , Bovinos/classificação , Bovinos/genética , Mamíferos/genética , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Suínos/classificação , Suínos/genética
18.
Mol Biol Evol ; 16(5): 706-10, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10335662

RESUMO

Protamines are arginine-rich proteins that replace histones and bind sperm DNA during spermatogenesis in vertebrates. Previous studies have shown that protamine exons evolve faster than does the protamine intron. It has been suggested that this is a result of a relaxation of functional constraint. However, a more likely explanation is that the evolutionary rate of exons has been accelerated by positive Darwinian selection, because introns are generally believed to evolve in a neutral fashion. Therefore, we examined the possibility that positive selection has been acting on the protamine genes of three groups of placental mammals: primates (hominoids and Old World monkeys), rodents (mice, rats, and guinea pigs), and pecoran ruminants (deer and bovids). We found that the nucleotide substitution rate at nonsynonymous sites is significantly higher than the rate at synonymous and intron sites for protamine P1 of hominoids and Old World monkeys. This result suggests that positive selection has been operating on protamine P1 of these species. In contrast, no clear-cut evidence of positive selection was found for protamine P1 of ruminants and rodents or protamine P2 of primates. The agent of positive selection on primate protamine P1 remains unknown, though sperm competition is a possibility. Further investigations on the function and intraspecific polymorphism of this protein are needed in order to identify the selection agent.


Assuntos
Evolução Molecular , Primatas/fisiologia , Protaminas/genética , Seleção Genética , Animais , Humanos , Íntrons , Modelos Biológicos , Ratos , Ruminantes/genética
19.
J Hered ; 90(1): 228-31, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-9987931

RESUMO

The utility of microsatellites for managing captive Tursiops truncatus was investigated. Specifically the level of genetic diversity among the loci examined and their usefulness for resolving paternity was assessed. Overall a relatively low level of genetic variation was found among captive dolphins. In addition, a high percentage of common alleles was found among dolphins belonging to different morphotypes (inshore versus offshore). The implications of these findings are discussed and suggestions are given for the use of genetic markers in captive propagation programs for T. truncatus.


Assuntos
Golfinhos/genética , Variação Genética , Repetições de Microssatélites/genética , Animais , DNA/química , Golfinhos/classificação , Biblioteca Genômica , Heterozigoto , Reação em Cadeia da Polimerase/veterinária
20.
Mol Phylogenet Evol ; 8(3): 349-62, 1997 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9417893

RESUMO

Toward the goal of recovering the phylogenetic relationships among elapid snakes, we separately found the shortest trees from the amino acid sequences for the venom proteins phospholipase A2 and the short neurotoxin, collectively representing 32 species in 16 genera. We then applied a method we term gene tree parsimony for inferring species trees from gene trees that works by finding the species tree which minimizes the number of deep coalescences or gene duplications plus unsampled sequences necessary to fit each gene tree to the species tree. This procedure, which is both logical and generally applicable, avoids many of the problems of previous approaches for inferring species trees from gene trees. The results support a division of the elapids examined into sister groups of the Australian and marine (laticaudines and hydrophiines) species, and the African and Asian species. Within the former clade, the sea snakes are shown to be diphyletic, with the laticaudines and hydrophiines having separate origins. This finding is corroborated by previous studies, which provide support for the usefulness of gene tree parsimony.


Assuntos
Venenos Elapídicos/enzimologia , Elapidae/genética , Fosfolipases A/genética , Filogenia , Animais , Elapidae/classificação , Fosfolipases A/química , Fosfolipases A2 , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA