Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 102: 106755, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219547

RESUMO

Milk fat globules or milk fat globule membranes (MFGs/MFGM) have been added to the infant formula to fortify the phospholipids and narrow the nutritional gap from breast milk. The main aim of this study was to profile the interfacial and thermal properties of MFGs/MFGM prepared from ultrasonicated bovine milk. Bovine milk was sonicated at ultrasonic intensities of 20 kHz and 40 kHz independently or synchronously with the duration time of 0 min (control), 5 min, 10 min, and 15 min (work/rest cycles = 5 s: 3 s). Ultrasonic treatments at 20 kHz/ 5 min and 20 + 40 kHz/ 5 min improved the volume density (%) of smaller particles (1-10 µm) while significantly decreasing the surface hydrophobicity (H0) (p < 0.05). 40 kHz/5 min samples showed significantly higher ζ- potential than the other samples (p < 0.05), which might be because more negative charges were detected. In comparison with control samples, ultrasonic treatments decreased the interfacial tension (π) between the air and MFGs/MFGM liquid phase. 20 kHz ultra-sonicated treatments decreased the diffusion rate (k diff) of MFGs/MFGM interfacial compositions significantly as the duration prolonged from 5 min to 15 min (p < 0.05) but did not affect the adsorption or penetration rate (k a) (p > 0.05). X-ray diffraction (XRD) results showed that α-crystal peaks only existed in control and ultrasonicated 5 min samples but disappeared in all 15 min samples. According to the different scanning calorimetry (DSC), one or two new exothermic events (in the range of 17.29 - 18.81 â„ƒ and 22.14 - 25.21 â„ƒ) appeared after ultrasonic treatments, which, however, were not found in control samples. Ultrasonic treatments resulted in the low-melting fractions (LMF) (TM1) peaks undetectable in MFGs/MFGM samples in which only peaks of medium-melting fractions (MMF) (TM2) and high-melting fractions (HMF) (TM3) were detected. Compared with the control, both enthalpies of crystallisation (ΔHC) and melting (ΔHM) decreased in ultrasonicated samples. In conclusion, ultrasonic treatment affects the interfacial and thermal properties of MFGs/MFGM.


Assuntos
Glicoproteínas , Leite , Humanos , Lactente , Feminino , Animais , Leite/química , Glicolipídeos , Gotículas Lipídicas
2.
Foods ; 12(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37048312

RESUMO

In this study, zein protein isolate (ZPI) and chickpea protein concentrate (CPC) ingredients were used to formulate five plant-based cheese alternatives. Ingredient ratios based on protein contributions of 0:100, 25:75, 50:50, 75:25 and 100:0 from ZPI and CPC, respectively, were used. Formulations were developed at pH ~4.5, with a moisture target of 59%. Shea butter was used to target 15% fat, while tapioca starch was added to target the same carbohydrate content for all samples. Microstructural analysis showed differences among samples, with samples containing ZPI displaying a protein-rich layer surrounding the fat globules. Schreiber meltability and dynamic low amplitude oscillatory shear rheological analyses showed that increasing the proportion of ZPI was associated with increasing meltability and greater ability to flow at high temperatures. In addition, the sample containing only CPC showed the highest adhesiveness, springiness and cohesiveness values from the texture profile analysis, while the sample containing only ZPI exhibited the highest hardness. Furthermore, stretchability increased with increasing ZPI proportions. This work will help understanding of the role and potential of promising plant-protein-ingredient blends in formulating plant-based alternatives to cheese with desirable functional properties.

3.
Polymers (Basel) ; 15(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37050384

RESUMO

The chemical composition, macromolecular characteristics, and structure of four types of Tremella fuciform polysaccharides (TPS) were analyzed, including one TPS that was extracted in the laboratory (L-TPS) and three commercial TPS. The effects of pH on the properties of TPS emulsions were investigated by analyzing their zeta potential, particle size, apparent viscosity, and stability. The results showed that L-TPS presented a higher percentage content of protein (2.33%) than commercial TPS (0.73-0.87%), and a lower molecular mass (17.54 × 106 g/mol). Thus, L-TPS exhibited the best emulsifying activity but gave poor emulsion stability. The droplet sizes and apparent viscosity of commercial TPS-stabilized emulsions were larger or higher in acidic environments. At pH 2, the apparent viscosity was the lowest for L-TPS. Commercial TPS emulsions were most stable at pH 6, while the L-TPS-stabilized emulsion was most stable at pH 2. The obtained results revealed that the emulsifying properties of TPS varied and the effects of pH on emulsion characteristics differed, as determined from the molecular mass, macromolecular characteristics, and structure. This research is useful for expanding the application of TPS as a novel food ingredient in emulsions.

4.
Foods ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36673460

RESUMO

Plant proteins are constantly gaining attention as potential substitutes for dairy proteins, due to their suitable functionality and nutritional value. This study was designed to compare the structural and functional responses of different plant protein isolates (soy, pea, lentil, and chickpea) with two commonly used dairy protein (whey protein isolates and sodium caseinate) under different pH treatments (pH 3.0, 5.0, 7.0, and 9.0). The results showed that pH had a different alteration on the structural, surface properties and functional properties of plant and dairy proteins. Plant protein generally possessed a darker color, lower solubility, emulsifying properties, and foaming capacity, whereas their foaming stability and water holding capacity were higher than those of dairy proteins. Soy protein isolates were characterized by its comparable proportion of ß-turn and random coils, zeta-potential, emulsifying (30.37 m2/g), and water-holding capacity (9.03 g/g) at alkaline conditions and chickpea protein isolates showed good oil-holding capacity (3.33 g/g at pH 9) among plant proteins. Further analysis confirmed that pH had a greater influence on the structural and functional properties of proteins as compared to protein sources, particularly at acidic conditions. Overall, this study might help processors select the appropriate plant protein as dairy alternatives for their target application in plant-based food products.

5.
Foods ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553849

RESUMO

Milk fat globules (MFGs) have tri-layer biological membrane structures, and their compositions are gaining more interest for their physiological benefits. In this study, the changes in MFGs and milk fat globule membrane (MFGM) proteins after cream separation from different pH bovine raw milk were investigated. Raw milk samples were adjusted to pH 5.30 and 6.30 using citric acid at 25 °C. The effect of pH and centrifugation on the structure of MFGs was evaluated by means of particle size, zeta potential and confocal laser scanning microscopy (CLSM). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to analyze the proteins in the obtained fractions. It was found that both pH and centrifugation could affect the particle size of all samples. As the volume distribution (Dv; Dv (10), Dv(50)and Dv (90)) decreased, the corresponding specific surface area (SSA) increased, and span and uniformity values showed the same trend. The decrease in the zeta potential of MFG correlated with the Dv(50), which was further confirmed by CLSM observation. More butyrophilin (BTN) and periodic acid Schiff 6/7 (PAS 6/7) were lost in cream samples at pH 5.30. The findings could provide valuable knowledge for the application of MFGs ingredient in the food industry since their structures and compositions could affect their potential functional and physiological properties.

6.
Foods ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670558

RESUMO

Noncrystalline, freeze-concentrated structures are formed during food freezing. Such freeze-concentrated food materials often exhibit crystallization and recrystallization phenomena which can be related to the state of solutes and water. State diagrams are important tools in mapping the physical state and time-dependent properties of frozen materials at various storage temperatures. Transition of simple solutions, such as sucrose, can be used to describe vitrification and ice melting in freeze-concentrated materials. A maximally freeze-concentrated material often shows glass transition at Tg'. Ice melting occurs at temperatures above Tm' These transitions at temperatures above Tm' can be used to estimate crystallization and recrystallization phenomena and their rates in frozen foods. Furthermore, frozen food deterioration accelerates above Tm' and particularly as a result of temperature fluctuations during frozen food distribution and storage.

7.
Foods ; 9(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941012

RESUMO

The physical properties of 15 commercially available infant formulas (IF) and follow-on (FO) formulas were analysed. Powders made with intact milk proteins were classified into two groups; Type I-homogenous mixtures of milk powder particles (n = 6); and Type II-heterogeneous mixtures of milk powder particles and tomahawk-shaped α-lactose monohydrate crystals (n = 6). Powders made using hydrolysed proteins were classified as Type III powders (n = 3). Type II powders exhibited similar flow characteristics to Type I powders despite having significantly (p < 0.05) smaller particle size, lower circularity, and greater elongation. Type III powders exhibited lowest particles size, highest surface free fat, and poorest flow properties (p < 0.05 for all). Upon reconstitution of powders (12.5% w/w), no significant difference (p < 0.05) in apparent viscosity was observed between Type I and II powders. Reconstituted Type III powders had relatively poor stability to separation compared to Type I and II powders, caused by large starch granules and/or poor emulsification by hydrolysed proteins. Overall, this study illustrated the range of physical behaviour and structures present in commercial IF powders. In particular, the effect of dry addition of lactose and the hydrolysis of protein were found to have major effects on physical properties.

8.
Food Res Int ; 122: 137-148, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229065

RESUMO

Present study developed a strength analysis for relaxation time (τ) in characterizing physicochemical properties and structural transformation of freeze-dried honey/whey protein isolate (H/WPI) and honey/maltodextrin (H/MD) models based on water sorption, time-dependent crystallization, glass transition, and α-relaxation at various water activities (0.11aw to 0.76aw) and 25 °C. Water sorption data of two models explained WPI was a more effectiveness drying stabilizer than MD as H/WPI model owned higher monolayer water content. Crystallization was observed in prepared models with drying-aids content below 50% of mass ratios at water activity above 0.44aw and 25 °C, whereas the extent of crystallization and structural collapse were inhibited by WPI and MD addition based on sorption isotherms. Glass transition temperature, α-relaxation temperature, and τ for two models were composition-dependent and altered by water, WPI, and MD at water activity below 0.44aw. According to strength analysis of τ, the S for H/WPI and H/MD models was affected by drying-aids and could give a quantitative measure to estimate compositional effects on τ. Moreover, a S-involved state diagram was established to determine the critical parameters (water content and S) for controlling structural transformation of honey powder models during production and storage, i.e., collapse and stickiness.


Assuntos
Mel/análise , Fenômenos Químicos , Cristalização , Modelos Químicos , Polissacarídeos/química , Temperatura de Transição , Água/química , Proteínas do Soro do Leite
9.
J Food Sci ; 82(9): 2105-2112, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28858389

RESUMO

Lactose-sugars systems were produced by spray drying. They were lactose, lactose-glucose (4:1) mixtures, lactose-maltose (4:1) mixtures, lactose-sucrose (4:1) mixtures, lactose-trehalose (4:1) mixtures, and lactose-corn syrup solids (CSS) (4:1) mixtures. The physical characteristics, water sorption behavior, glass transition, and mechanical properties of miscible lactose-sugars systems were investigated. Lactose-glucose mixtures had larger particle size than other lactose-sugars systems after spray drying. The presence of glucose or sucrose in lactose-sugars mixtures decreased the glass transition temperatures of amorphous systems, while the presence of maltose and trehalose had only minor impact on the glass transition temperatures. Moreover, glucose accelerated the crystallization of amorphous system at 0.44 aw , but its presence delayed the loss of sorbed water at higher water activities (≥0.54 aw ). Mechanical property study indicated that glucose and sucrose in amorphous system could result in an increase of molecular mobility, while the presence of CSS could decrease the free volume and maintain the stiffness of the miscible systems.


Assuntos
Lactose/química , Açúcares/química , Fenômenos Biomecânicos , Cristalização , Dessecação , Temperatura de Transição
10.
Crit Rev Food Sci Nutr ; 57(15): 3173-3187, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26566035

RESUMO

Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.


Assuntos
Emulsificantes/administração & dosagem , Emulsões , Aromatizantes/administração & dosagem , Paladar , Humanos , Óleos , Água
11.
J Phys Chem B ; 119(23): 7077-86, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25974045

RESUMO

Water distribution and miscibility of carbohydrate and protein components in biological materials and their structural contributions in concentrated solids are poorly understood. In the present study, structural relaxations and a glass transition of protein hydration water and antiplasticization of the hydration water at low temperatures were measured using dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) for bovine whey protein (BWP), aqueous glucose-fructose (GF), and their mixture. Thermal transitions of α-lactalbumin and ß-lactoglobulin components of BWP included water-content-dependent endothermic but reversible dehydration and denaturation, and exothermic and irreversible aggregation. An α-relaxation assigned to hydration water in BWP appeared at water-content-dependent temperatures and increased to over the range of 150-200 K at decreasing water content and in the presence of GF. Two separate glass transitions and individual fractions of unfrozen water of ternary GF-BWP-water systems contributed to uncoupled α-relaxations, suggesting different roles of protein hydration water and carbohydrate vitrification in concentrated solids during freezing and dehydration. Hydration water in the BWP fraction of GF-BWP systems was derived from equilibrium water sorption and glass transition data of the GF fraction, which gave a significant universal method to quantify (i) protein hydration water and (ii) the unfrozen water in protein-carbohydrate systems for such applications as cryopreservation, freezing, lyophilization, and dehydration of biological materials. A ternary supplemented phase diagram (state diagram) established for the GF-BWP-water system can be used for the analysis of the water distribution across carbohydrate and protein components in such applications.


Assuntos
Frutose/química , Vidro/química , Glucose/química , Água/química , Proteínas do Soro do Leite/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Transição de Fase , Temperatura
12.
Food Res Int ; 74: 160-167, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28411980

RESUMO

The objective of the present study was to investigate flocculation in layer-by-layer (LBL) emulsion systems with high total solids content and deflocculation at various pH conditions, and the effects of whey protein isolate (WPI) concentration and total solids content on the stability of LBL emulsions. WPI (1.96% (1WPI) or 10.71% (10WPI), w/w in water) was prepared in water and high-pressure homogenized with sunflower oil (10%, w/w, of total emulsion). Gum Arabic (0.15%, w/w, in total emulsion) was added to assemble electrostatically on WPI at oil particle interfaces at pH3.5 using aqueous citric acid (10% w/w) forming LBL emulsion. The ζ-potential measurements showed charge reversal upon addition of gum Arabic solution into single layer (SL) emulsion confirming the formation of LBL interface. Trehalose:maltodextrin mixture (1:1, w/w, total emulsion, 28.57% (28) or 57.14% (57), w/w, in water) was used in the continuous phase. The high total solids content of the system results in depletion flocculation of the particles leading to bridging flocculation without coalescence as deflocculation into individual particles occurred with increasing pH from pH3.5 to pH6.5 in 10WPI systems. Deflocculation was evident in 10WPI-28 and 10WPI-57 as found from a decreased ζ-average diameter and visually under microscope. Coalescence was observed in 1WPI systems. Viscosity of the systems was significantly (P<0.05) increased with higher total solids content. Accelerated destabilization test showed that systems at higher WPI and total solids contents exhibited the highest stability against creaming. Deflocculation in LBL systems can be controlled by pH while high solids in the aqueous phase provide stability against creaming.

13.
J Agric Food Chem ; 62(47): 11420-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25364855

RESUMO

Emulsion-filled protein gels (EFP gels) were prepared through a cold-set gelation process, and they were used to deliver volatile compounds. An increase in the whey protein isolate (WPI) content from 4 to 6% w/w did not show significant effect on the gelation time, whereas an increase in the oil content from 5 to 20% w/w resulted in an earlier onset of gelation. Gels with a higher WPI content had a higher storage modulus and water-holding capacity (WHC), and they presented a higher force and strain at breaking, indicating that a more compact gel network was formed. An increase in the oil content contributed to gels with a higher storage modulus and force at breaking; however, this increase did not affect the WHC of the gels, and gels with a higher oil content became more brittle, resulting in a decreased strain at breaking. GC headspace analysis showed that volatiles released at lower rates and had lower air-gel partition coefficients in EFP gels than those in ungelled counterparts. Gels with a higher WPI content had lower release rates and partition coefficients of the volatiles. A change in the oil content significantly modified the partition of volatiles at equilibrium, but it produced a minor effect on the release rate of the volatiles. The findings indicated that EFP gels could be potentially used to modulate volatile release by varying the rheological properties of the gel.


Assuntos
Temperatura Baixa , Géis/química , Proteínas/química , Reologia , Compostos Orgânicos Voláteis/análise , Emulsões , Microscopia Confocal , Óleos/química , Água/química
14.
J Agric Food Chem ; 62(43): 10585-93, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25251787

RESUMO

Understanding macronutrient interactions during heating is important for controlling viscosity during infant milk formula (IMF) manufacture. Thermal behavior of macronutrients (casein, whey, lactose, fat) was studied, in isolation and combination, over a range of concentrations. Addition of phosphocasein to whey protein solutions elevated denaturation temperature (Td) of ß-lactoglobulin and the temperature at which viscosity started to increase upon heating (Tv). Secondary structural changes in whey proteins occurred at higher temperatures in dispersions containing phosphocasein; the final extent of viscosity increase was similar to that of whey protein alone. Addition of lactose to whey protein solutions delayed secondary structural changes, increased Td and Tv, and reduced post heat treatment viscosity. This study demonstrated that heat-induced changes in IMF associated with whey protein (denaturation, viscosity) are not only a function of concentration but are also dependent on interactions between macronutrients.


Assuntos
Fórmulas Infantis/química , Caseínas/química , Gorduras/química , Temperatura Alta , Lactose/química , Proteínas do Leite/química , Valor Nutritivo , Viscosidade , Proteínas do Soro do Leite
15.
J Agric Food Chem ; 61(26): 6231-9, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23718126

RESUMO

Whey protein isolate (WPI) and pectin can form a multilayer at the oil-water interface when they are oppositely charged. In this study, effects of pH, salt, and artificial salivas on emulsion stability and volatile release from multilayer emulsions were investigated. Results showed that emulsions (0.5 wt % WPI, 10 wt % oil) with pectin content ≤0.1 wt % had rapid phase separation at pH 4 and 5, and emulsions with higher pectin content (≥0.2 wt %) had good stability. Due to an electrostatic screening effect, multilayer emulsions collapsed when subjected to ≥150 mM NaCl solutions at pH 5. When diluted with artificial salivas containing salts, mucin, and/or α-amylase, multilayer emulsions showed rapid droplet aggregation. GC headspace analysis found that volatiles had significantly lower initial headspace concentration (C(initial)) in multilayer emulsions, and the C(initial) correlated negatively with pectin content in emulsions. Emulsions at pH 7 had more volatiles released to the headspace than emulsions at pH 5. However, changes in pectin content and pH did not show a significant effect on release rate of most volatile compounds. In salt-treated multilayer emulsions, C(initial) and release rates of volatiles increased with NaCl content. Addition of salivas triggered higher release of hydrophobic volatiles and lower release of hydrophilic volatiles, which was mostly due to dilution effect and saliva-induced emulsion instability.


Assuntos
Proteínas do Leite/química , Modelos Biológicos , Pectinas/química , Saliva/metabolismo , Cloreto de Sódio na Dieta/análise , Compostos Orgânicos Voláteis/análise , Emulsões , Humanos , Concentração de Íons de Hidrogênio , Cinética , Proteínas do Leite/metabolismo , Concentração Osmolar , Pectinas/metabolismo , Estabilidade Proteica , Saliva/química , Cloreto de Sódio na Dieta/metabolismo , Paladar , Compostos Orgânicos Voláteis/química , Volatilização , Proteínas do Soro do Leite
16.
J Agric Food Chem ; 61(13): 3167-78, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23470203

RESUMO

Crystalline structures of sugars, particularly that of sucrose, depend on crystallization conditions and the presence of impurities. Sugar crystals show melting that often occurs at low temperatures with time- and temperature-dependent characteristics. Melting at low temperatures can be accounted for by the presence of impurties and defects. Sugar crystals also contain noncrystalline regions that may undergo decomposition and subsequent dissolution at the decomposition interface and acceleration of decomposition reactions. Such processes with melting establish a supersaturated condition for the remaining crystals, leading to a time-dependent melting point depression and subsequent melting of the remaining crystals. Decomposition of sugars, as well as dissolution and melting of sugar crystals, are separate phenomena, although they are commonly found to coincide. Decomposition of sugars requires the presence and mobility of molecules for reactions outside the crystal lattice; that is, the molecular mobility of amorphous or melted regions is a prerequisite for decomposition, whereas melting of sugar crystals occurs as a separate thermodynamic process with no chemical change of the molecules.


Assuntos
Carboidratos/química , Cristalização , Temperatura , Termodinâmica
17.
J Agric Food Chem ; 61(15): 3748-56, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23517062

RESUMO

Whey protein isolate (WPI)-oil (75:25) and WPI-oil-(glucose-fructose) (45:15:40) as models of high-protein systems containing either olive (OO) or sunflower oil (SO) were stored at 20 or 40 °C to investigate component interactions. The indicators of protein oxidation (carbonyl content) and aggregation (total sulfhydryl content) and heats of protein denaturation and aggregation were investigated. Highest levels of disulfide bonding and carbonyls in WPI-OO formed during the first 2 weeks of storage concomitantly with enhanced protein aggregation. WPI-OO and WPI-SO systems (prestorage) showed increased protein denaturation temperature. The WPI proteins showed higher heat sensitivity with OO or SO at 40 °C, and the system with OO showed preaggregated protein as found from decreased heats of protein aggregation. OO or SO in WPI-oil-(glucose-fructose) systems reduced heats of protein aggregation. Lipid oxidation products and nonenzymatic browning reactions in glucose-fructose-containing systems decreased the solubility of solids and increased protein aggregation, hydrophobicity, and hardening of structure.


Assuntos
Proteínas do Leite/química , Óleos de Plantas/química , Armazenamento de Alimentos , Glicosilação , Azeite de Oliva , Oxirredução , Carbonilação Proteica , Desnaturação Proteica , Estabilidade Proteica , Solubilidade , Óleo de Girassol , Temperatura , Proteínas do Soro do Leite
18.
J Sci Food Agric ; 93(11): 2646-53, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23426904

RESUMO

BACKGROUND: Encapsulation of hydrophobic nutrients can be achieved by freezing and freeze-drying of oil-in-water emulsions containing glass-forming materials. The addition of a polyelectrolyte layer on the protein-stabilised oil droplets may provide better protection to the oil phase against external stresses. RESULTS: Soy protein-trehalose and whey protein-trehalose emulsions with (layer-by-layer, LBL) and without (single-layer, SL) ι-carrageenan were used as the delivery systems for olive oil with dissolved α-tocopherol. Emulsions containing 0.125 g kg(-1) protein, 0.42 g kg(-1) oil and 150 g kg(-1) trehalose with (LBL) or without (SL) 0.25 g kg(-1) ι-carrageenan at pH 3 were frozen and freeze-dried and their state transitions were studied. The stability of α-tocopherol in freeze-dried systems at 0 and 0.33 water activity (aw ) during storage at 55 °C was followed. Loss of α-tocopherol was found in soy protein-stabilised SL systems at 0.33 aw , and this loss coincided with trehalose crystallisation. The stability of α-tocopherol was retained in soy protein-stabilised LBL and whey protein-stabilised LBL and SL systems at all conditions. Trehalose crystallisation-induced loss of structure was confirmed from changes in emulsion properties and visual appearance. CONCLUSION: Component sugar crystallisation contributed to the loss of sensitive compounds, but the stability of these compounds can be improved by the use of LBL formulations.


Assuntos
Análise de Alimentos , Proteínas do Leite/química , Proteínas de Soja/química , alfa-Tocoferol/química , Carragenina/química , Dessecação , Emulsões/química , Congelamento , Azeite de Oliva , Óleos de Plantas/química , Trealose , Proteínas do Soro do Leite
19.
J Agric Food Chem ; 61(7): 1427-34, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23331191

RESUMO

Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p < 0.05). However, volatiles had higher release rates in emulsions with higher MG contents. When oil content was reduced from 20 to 10%, C(initial) and C(max) increased for limonene and hexanal and decreased for propanol and diacetyl. When different oils were applied, both C(initial) and C(max) were significantly lower in medium-chain triglyceride emulsions than in soybean oil emulsions (p < 0.05). Static headspace analysis revealed that volatile compounds had significantly lower air-emulsion partition coefficients in the structured emulsions than in unstructured emulsions (p < 0.05). These results indicated that MG structured emulsions can be potentially used as delivery systems to modulate volatile release.


Assuntos
Emulsões/química , Monoglicerídeos/análise , Óleos Voláteis/análise , Óleos Voláteis/química , 1-Propanol/análise , Aldeídos/análise , Varredura Diferencial de Calorimetria , Cicloexenos/análise , Diacetil/análise , Limoneno , Monoglicerídeos/química , Terpenos/análise , Triglicerídeos/análise , Triglicerídeos/química , Água/química
20.
Foods ; 2(1): 1-17, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-28239092

RESUMO

The objectives of this study were to develop composite films using various gelatin sources with corn oil (CO) incorporation (55.18%) and to investigate the mechanical and physical properties of these films as potential packaging films. There were increases (p < 0.05) in the tensile strength (TS) and puncture strength (PS) of films when the concentration of gelatin increased. The mechanical properties of these films were also improved when compared with films produced without CO. Conversely, the water barrier properties of composite films decreased (p < 0.05) when the concentration of gelatin in composite films increased. Comparing with pure gelatin films, water and oxygen barrier properties of gelatin films decreased when manufactured with the inclusion of CO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA