Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
EBioMedicine ; 100: 104960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232633

RESUMO

BACKGROUND: SARS-CoV-2-neutralizing antibodies (nABs) showed great promise in the early phases of the COVID-19 pandemic. The emergence of resistant strains, however, quickly rendered the majority of clinically approved nABs ineffective. This underscored the imperative to develop nAB cocktails targeting non-overlapping epitopes. METHODS: Undertaking a nAB discovery program, we employed a classical workflow, while integrating artificial intelligence (AI)-based prediction to select non-competing nABs very early in the pipeline. We identified and in vivo validated (in female Syrian hamsters) two highly potent nABs. FINDINGS: Despite the promising results, in depth cryo-EM structural analysis demonstrated that the AI-based prediction employed with the intention to ensure non-overlapping epitopes was inaccurate. The two nABs in fact bound to the same receptor-binding epitope in a remarkably similar manner. INTERPRETATION: Our findings indicate that, even in the Alphafold era, AI-based predictions of paratope-epitope interactions are rough and experimental validation of epitopes remains an essential cornerstone of a successful nAB lead selection. FUNDING: Full list of funders is provided at the end of the manuscript.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Feminino , Epitopos , Pandemias , Inteligência Artificial , Anticorpos Antivirais , Anticorpos Neutralizantes , Mesocricetus
3.
Sci Transl Med ; 13(621): eabi7826, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34609205

RESUMO

Broadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future Sarbecovirus outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2­neutralizing antibody-like therapeutics. Here, we identified VHHs that neutralize both SARS-CoV-1 and SARS-CoV-2, including now circulating variants. We observed that the VHHs bound to a highly conserved epitope in the receptor binding domain of the viral spike protein that is difficult to access for human antibodies. Structure-guided molecular modeling, combined with rapid yeast-based prototyping, resulted in an affinity enhanced VHH-human immunoglobulin G1 Fc fusion molecule with subnanomolar neutralizing activity. This VHH-Fc fusion protein, produced in and purified from cultured Chinese hamster ovary cells, controlled SARS-CoV-2 replication in prophylactic and therapeutic settings in mice expressing human angiotensin converting enzyme 2 and in hamsters infected with SARS-CoV-2. These data led to affinity-enhanced selection of the VHH, XVR011, a stable anti­COVID-19 biologic that is now being evaluated in the clinic.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Modelos Animais , SARS-CoV-2
4.
mBio ; 12(4): e0074521, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253060

RESUMO

The ectodomain of matrix protein 2 (M2e) of influenza A viruses is a universal influenza A vaccine candidate. Here, we report potential evasion strategies of influenza A viruses under in vivo passive anti-M2e IgG immune selection pressure in severe combined immune-deficient (SCID) mice. A/Puerto Rico/8/34-infected SCID mice were treated with the M2e-specific mouse IgG monoclonal antibodies (MAbs) MAb 65 (IgG2a) or MAb 37 (IgG1), which recognize amino acids 5 to 15 in M2e, or with MAb 148 (IgG1), which binds to the invariant N terminus of M2e. Treatment of challenged SCID mice with any of these MAbs significantly prolonged survival compared to isotype control IgG treatment. Furthermore, M2e-specific IgG2a protected significantly better than IgG1, and even resulted in virus clearance in some of the SCID mice. Deep sequencing analysis of viral RNA isolated at different time points after treatment revealed that the sequence variation in M2e was limited to P10H/L and/or I11T in anti-M2e MAb-treated mice. Remarkably, in half of the samples isolated from moribund MAb 37-treated mice and in all MAb 148-treated mice, virus was isolated with a wild-type M2 sequence but with nonsynonymous mutations in the polymerases and/or the hemagglutinin genes. Some of these mutations were associated with delayed M2 and other viral gene expression and with increased resistance to anti-M2e MAb treatment of SCID mice. Treatment with M2e-specific MAbs thus selects for viruses with limited variation in M2e. Importantly, influenza A viruses may also undergo an alternative escape route by acquiring mutations that result in delayed wild-type M2 expression. IMPORTANCE Broadly protective influenza vaccine candidates may have a higher barrier to immune evasion compared to conventional influenza vaccines. We used Illumina MiSeq deep sequence analysis to study the mutational patterns in A/Puerto Rico/8/34 viruses that evolve in chronically infected SCID mice that were treated with different M2e-specific MAbs. We show that under these circumstances, viruses emerged in vivo with mutations in M2e that were limited to positions 10 and 11. Moreover, we discovered an alternative route for anti-M2e antibody immune escape, in which a virus is selected with wild-type M2e but with mutations in other gene segments that result in delayed M2 and other viral protein expression. Delayed expression of the viral antigen that is targeted by a protective antibody thus represents an influenza virus immune escape mechanism that does not involve epitope alterations.


Assuntos
Anticorpos Antivirais/uso terapêutico , Imunoglobulina G/uso terapêutico , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Mutação , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Evasão da Resposta Imune , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas da Matriz Viral/classificação
5.
Nat Commun ; 11(1): 5838, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203860

RESUMO

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Animais , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Cricetinae , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , SARS-CoV-2 , Fator de Transcrição STAT2/genética , Replicação Viral
6.
Mol Ther Nucleic Acids ; 22: 373-381, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230442

RESUMO

mRNA-lipoplex vaccines are currently being explored in phase II clinical trials for the treatment of patients with advanced solid tumors. Mechanistically, these mRNA-lipoplex vaccines are characterized by the induction of type I interferon (IFN) centered innate responses. Earlier studies have identified type I IFNs as major regulators of the T cell response instigated by mRNA-lipoplex vaccines. However, stimulatory or, in contrast, profound inhibitory effects of type I IFNs were described depending on the study. In this mouse study, we demonstrated that the opposing roles of type I IFN signaling on the magnitude of the vaccine-evoked T cell responses is dependent on the route of mRNA-lipoplex administration and is regulated at the level of the T cells rather than indirectly through modulation of dendritic cell function. This study helps to understand the double-edged sword character of type I IFN induction upon mRNA-based vaccine treatment and may contribute to a more rational design of mRNA vaccination regimens.

7.
Nat Commun ; 11(1): 2832, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504029

RESUMO

Human amyloids have been shown to interact with viruses and interfere with viral replication. Based on this observation, we employed a synthetic biology approach in which we engineered virus-specific amyloids against influenza A and Zika proteins. Each amyloid shares a homologous aggregation-prone fragment with a specific viral target protein. For influenza we demonstrate that a designer amyloid against PB2 accumulates in influenza A-infected tissue in vivo. Moreover, this amyloid acts specifically against influenza A and its common PB2 polymorphisms, but not influenza B, which lacks the homologous fragment. Our model amyloid demonstrates that the sequence specificity of amyloid interactions has the capacity to tune amyloid-virus interactions while allowing for the flexibility to maintain activity on evolutionary diverging variants.


Assuntos
Amiloide/farmacologia , Antivirais/farmacologia , Genética Reversa/métodos , Biologia Sintética/métodos , Amiloide/genética , Amiloide/uso terapêutico , Animais , Antivirais/uso terapêutico , Modelos Animais de Doenças , Cães , Feminino , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Polimorfismo Genético , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/virologia
9.
Mol Ther Nucleic Acids ; 20: 777-787, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32438313

RESUMO

To date, mRNA-based biologics have mainly been developed for prophylactic and therapeutic vaccination to combat infectious diseases or cancer. In the past years, optimization of the characteristics of in vitro transcribed mRNA has led to significant reduction of the inflammatory responses. Thanks to this, mRNA therapeutics have entered the field of passive immunization. Here, we established an mRNA treatment that is based on mRNA that codes for a bispecific single-domain antibody construct that can selectively recruit innate immune cells to cells infected with influenza A virus. The constructs consist of a single-domain antibody that binds to the ectodomain of the conserved influenza A matrix protein 2, while the other single-domain antibody binds to the activating mouse Fcγ receptor IV. Formulating the mRNA into DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)/cholesterol nanoparticles and delivering these intratracheally to mice allowed the production of the bispecific single-domain antibody in the lungs, and administration of these mRNA-particles prior to influenza A virus infection was associated with a significant reduction in viral titers and a reduced morbidity in mice. Overall, our data provide evidence that the local delivery of mRNA encoding a bispecific single-domain antibody format in the lungs could be a promising pulmonary antiviral prophylactic treatment.

10.
Cell ; 181(5): 1004-1015.e15, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32375025

RESUMO

Coronaviruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics. Here, we describe the isolation of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs neutralize MERS-CoV or SARS-CoV-1 S pseudotyped viruses, respectively. Crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs interfere with receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S and demonstrate that this cross-reactive VHH neutralizes SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Betacoronavirus/imunologia , Anticorpos de Domínio Único/isolamento & purificação , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , COVID-19 , Camelídeos Americanos/imunologia , Infecções por Coronavirus/terapia , Reações Cruzadas , Imunoglobulina G/química , Imunoglobulina G/imunologia , Modelos Moleculares , Pandemias , Pneumonia Viral/terapia , Domínios Proteicos , Receptores Virais/química , SARS-CoV-2 , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
11.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092574

RESUMO

Myxovirus resistance 1 (Mx1) is an interferon-induced gene that encodes a GTPase that plays an important role in the defense of mammalian cells against influenza A and other viruses. The Mx1 protein can restrict a number of viruses independently of the expression of other interferon-induced genes. Mx genes are therefore considered to be an important part of the innate antiviral immune response. However, the possible impact of Mx expression in the hematopoietic cellular compartment has not been investigated in detail in the course of a viral infection. To address this, we performed bone marrow chimera experiments using congenic B6.A2G Mx1+/+ and B6.A2G Mx1-/- mice to study the effect of Mx1 expression in cells of hematopoietic versus nonhematopoietic origin. Mx1+/+ mice were protected and Mx1-/- mice were susceptible to influenza A virus challenge infection, regardless of the type of bone marrow cells (Mx1+/+ or Mx1-/- ) the animals had received. Infection with Thogoto virus, however, revealed that Mx1-/- mice with a functional Mx1 gene in the bone marrow compartment showed reduced liver pathology compared with Mx1-/- mice that had been grafted with Mx1-/- bone marrow. The reduced pathology in these mice was associated with a reduction in Thogoto virus titers in the spleen, lung, and serum. Moreover, Mx1+/+ mice with Mx1-/- bone marrow failed to control Thogoto virus replication in the spleen. Mx1 in the hematopoietic cellular compartment thus contributes to protection against Thogoto virus infection.IMPORTANCE Mx proteins are evolutionarily conserved in vertebrates and can restrict a wide range of viruses in a cell-autonomous way. The contribution to antiviral defense of Mx1 expression in hematopoietic cells remains largely unknown. We show that protection against influenza virus infection requires Mx1 expression in the nonhematopoietic cellular compartment. In contrast, Mx1 in bone marrow-derived cells is sufficient to control disease and virus replication following infection with a Thogoto virus. This indicates that, in addition to its well-established antiviral activity in nonhematopoietic cells, Mx1 in hematopoietic cells can also play an important antiviral function. In addition, cells of hematopoietic origin that lack a functional Mx1 gene contribute to Thogoto virus dissemination and associated disease.


Assuntos
Células da Medula Óssea/imunologia , Imunidade Inata , Fatores Imunológicos/metabolismo , Proteínas de Resistência a Myxovirus/metabolismo , Infecções por Orthomyxoviridae/imunologia , Thogotovirus/imunologia , Animais , Medula Óssea/virologia , Fatores Imunológicos/deficiência , Vírus da Influenza A/imunologia , Pulmão/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Resistência a Myxovirus/deficiência , Infecções por Orthomyxoviridae/patologia , Soro/virologia , Baço/virologia , Carga Viral
12.
J Transl Med ; 17(1): 54, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795778

RESUMO

In 1975, Milstein and Köhler revolutionized the medical world with the development of the hybridoma technique to produce monoclonal antibodies. Since then, monoclonal antibodies have entered almost every branch of biomedical research. Antibodies are now used as frontline therapeutics in highly divergent indications, ranging from autoimmune disease over allergic asthma to cancer. Wider accessibility and implementation of antibody-based therapeutics is however hindered by manufacturing challenges and high development costs inherent to protein-based drugs. For these reasons, alternative ways are being pursued to produce and deliver antibodies more cost-effectively without hampering safety. Over the past decade, messenger RNA (mRNA) based drugs have emerged as a highly appealing new class of biologics that can be used to encode any protein of interest directly in vivo. Whereas current clinical efforts to use mRNA as a drug are mainly situated at the level of prophylactic and therapeutic vaccination, three recent preclinical studies have addressed the feasibility of using mRNA to encode therapeutic antibodies directly in vivo. Here, we highlight the potential of mRNA-based approaches to solve several of the issues associated with antibodies produced and delivered in protein format. Nonetheless, we also identify key hurdles that mRNA-based approaches still need to take to fulfill this potential and ultimately replace the current protein antibody format.


Assuntos
Anticorpos Monoclonais/uso terapêutico , RNA Mensageiro/uso terapêutico , Animais , Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Técnicas de Transferência de Genes , Humanos , Modelos Biológicos
13.
Viruses ; 10(8)2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110893

RESUMO

Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas de DNA/administração & dosagem , Proteínas Virais de Fusão/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Feminino , Glicosilação , Humanos , Hidrólise , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Engenharia de Proteínas , Subunidades Proteicas/administração & dosagem , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/imunologia , Carga Viral/efeitos dos fármacos
14.
Nat Commun ; 9(1): 3417, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143632

RESUMO

Cancer immunotherapy can induce durable antitumor responses. However, many patients poorly respond to such therapies. Here we describe a generic antitumor therapy that is based on the intratumor delivery of mRNA that codes for the necroptosis executioner mixed lineage kinase domain-like (MLKL) protein. This intervention stalls primary tumor growth and protects against distal and disseminated tumor formation in syngeneic mouse melanoma and colon carcinoma models. Moreover, MLKL-mRNA treatment combined with immune checkpoint blockade further improves the antitumor activity. MLKL-mRNA treatment rapidly induces T cell responses directed against tumor neo-antigens and requires CD4+ and CD8+ T cells to prevent tumor growth. Type I interferon signaling and Batf3-dependent dendritic cells are essential for this mRNA treatment to elicit tumor antigen-specific T cell responses. Moreover, MLKL-mRNA treatment blunts the growth of human lymphoma in mice with a reconstituted human adaptive immune system. MLKL-based treatment can thus be exploited as an effective antitumor immunotherapy.


Assuntos
Imunoterapia/métodos , Necrose/metabolismo , Neoplasias/terapia , Proteínas Quinases/genética , RNA Mensageiro/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Feminino , Humanos , Linfoma/imunologia , Linfoma/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Necrose/genética , Neoplasias/genética , Modelos de Riscos Proporcionais , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
J Control Release ; 264: 55-65, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28842314

RESUMO

We describe a novel live oral vaccine type. Conceptually, this vaccine is based on a non-lytic, recombinant filamentous bacteriophage that displays an antigen of interest. To provide proof of concept we used the amino-terminal part of a conserved influenza A virus epitope, i.e. matrix protein 2 ectodomain (M2e) residues 2 to 16, as the antigen of interest. Rather than using the phages as purified virus-like particles as a vaccine, these phages were delivered to intestinal Peyer's patches as a live bacterium-phage combination that comprises Escherichia coli cells that conditionally express invasin derived from Yersinia pseudotuberculosis. Invasin-expressing E. coli cells were internalized by mammalian Hep-2 cells in vitro and adhered to mouse intestinal microfold (M) cells ex vivo. Invasin-expressing E. coli cells were permissive for recombinant filamentous bacteriophage f88 that displays M2e and became persistently infected. Oral administration of the live engineered E. coli-invasin-phage combination to mice induced M2e-specific serum IgG antibodies. Mice that had been immunized with invasin-expressing E. coli cells that carried M2e2-16 displaying fd phages seroconverted to M2e and showed partial protection against challenge with influenza A virus. Oral delivery of a live vaccine comprising a bacterial host that is targeted to Peyer's patches and is persistently infected with an antigen-displaying phage, can thus be exploited as an oral vaccine.


Assuntos
Antígenos/imunologia , Bacteriófagos/imunologia , Escherichia coli/virologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza , Proteínas da Matriz Viral/imunologia , Adesinas Bacterianas/imunologia , Administração Oral , Animais , Linhagem Celular Tumoral , Escherichia coli/imunologia , Feminino , Humanos , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/microbiologia , Domínios Proteicos/imunologia
16.
J Vis Exp ; (123)2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28518083

RESUMO

Bronchoalveolar Lavage (BAL) is an experimental procedure that is used to examine the cellular and acellular content of the lung lumen ex vivo to gain insight into an ongoing disease state. Here, a simple and efficient method is described to perform BAL on murine lungs without the need of special tools or equipment. BAL fluid is isolated by inserting a catheter in the trachea of terminally anesthetized mice, through which a saline solution is instilled into the bronchioles. The instilled fluid is gently retracted to maximize BAL fluid retrieval and to minimize shearing forces. This technique allows the viability, function, and structure of cells within the airways and BAL fluid to be preserved. Numerous techniques may be applied to gain further understanding of the disease state of the lung. Here, a commonly used technique for the identification and enumeration of different types of immune cells is described, where flow cytometry is combined with a select panel of fluorescently labeled cell surface-specific markers. The BAL procedure presented here can also be used to analyze infectious agents, fluid constituents, or inhaled particles within murine lungs.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Lavagem Broncoalveolar/métodos , Inflamação , Pulmão/imunologia , Animais , Contagem de Células , Feminino , Citometria de Fluxo/métodos , Camundongos
17.
Adv Healthc Mater ; 6(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28436620

RESUMO

To date, the mRNA delivery field has been heavily dominated by lipid-based systems. Reports on the use of nonlipid carriers for mRNA delivery in contrast are rare in the context of mRNA vaccination. This paper describes the potential of a cell-penetrating peptide containing the amphipathic RALA motif to deliver antigen-encoding mRNA to the immune system. RALA condenses mRNA into nanocomplexes that display acidic pH-dependent membrane disruptive properties. RALA mRNA nanocomplexes enable mRNA escape from endosomes and thereby allow expression of mRNA inside the dendritic cell cytosol. Strikingly, RALA mRNA nanocomplexes containing pseudouridine and 5-methylcytidine modified mRNA elicit potent cytolytic T cell responses against the antigenic mRNA cargo and show superior efficacy in doing so when compared to RALA mRNA nanocomplexes containing unmodified mRNA. RALA's unique sequence and structural organization are vital to act as mRNA vaccine vehicle, as arginine-rich peptide variants that lack the RALA motif show reduced mRNA complexation, impaired cellular uptake and lose the ability to transfect dendritic cells in vitro and to evoke T cell immunity in vivo.


Assuntos
Antígenos , Linfócitos T CD8-Positivos/imunologia , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , RNA Mensageiro , Motivos de Aminoácidos , Animais , Antígenos/genética , Antígenos/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Citoplasma/imunologia , Endossomos/imunologia , Feminino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/farmacologia
18.
Antiviral Res ; 141: 155-164, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28257797

RESUMO

The ectodomain of the influenza A matrix protein 2 (M2e) is highly conserved amongst all influenza virus A subtypes. M2e is present on the surface of influenza A virus-infected cells, and therefore a suitable target for broadly protective therapies. We designed bispecific T cell engaging (BiTE®) antibody constructs specific for M2e by genetically fusing a single chain variable fragment (scFv) derived from an M2e-specific murine monoclonal antibody with a CD3ɛ-specific scFv. These so-called FLU BiTE® antibody constructs selectively mediate T cell dependent lysis of M2-expressing and influenza A virus infected cells and protect BALB/c mice against challenge with different influenza A virus subtypes. By humanizing the M2e-binding scFv, we generated human-like FLU BiTE® antibody constructs, with increased in vitro cytotoxic activity and in vivo protective capacity against influenza A virus infection. FLU BiTE® antibody constructs represent a promising new curative and prophylactic treatment option for influenza disease.


Assuntos
Anticorpos Biespecíficos/imunologia , Vírus da Influenza A/química , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Linfócitos T/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Antivirais/sangue , Testes Imunológicos de Citotoxicidade , Memória Imunológica , Vacinas contra Influenza/administração & dosagem , Camundongos
19.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077656

RESUMO

The ectodomain of matrix protein 2 is a universal influenza A virus vaccine candidate that provides protection through antibody-dependent effector mechanisms. Here we compared the functional engagement of Fcγ receptor (FcγR) family members by two M2e-specific monoclonal antibodies (MAbs), MAb 37 (IgG1) and MAb 65 (IgG2a), which recognize a similar epitope in M2e with similar affinities. The binding of MAb 65 to influenza A virus-infected cells triggered all three activating mouse Fcγ receptors in vitro, whereas MAb 37 activated only FcγRIII. The passive transfer of MAb 37 or MAb 65 in wild-type, Fcer1g-/-, Fcgr3-/-, and Fcgr1-/-Fcgr3-/- BALB/c mice revealed the importance of these receptors for protection against influenza A virus challenge, with a clear requirement of FcγRIII for IgG1 MAb 37 being found. We also report that FcγRIV contributes to protection by M2e-specific IgG2a antibodies.IMPORTANCE There is increased awareness that protection by antibodies directed against viral antigens is also mediated by the Fc domain of these antibodies. These Fc-mediated effector functions are often missed in clinical assays, which are used, for example, to define correlates of protection induced by vaccines. The use of antibodies to prevent and treat infectious diseases is on the rise and has proven to be a promising approach in our battle against newly emerging viral infections. It is now also realized that Fcγ receptors significantly enhance the in vivo protective effect of broadly neutralizing antibodies directed against the conserved parts of the influenza virus hemagglutinin. We show here that two M2e-specific monoclonal antibodies with close to identical antigen-binding specificities and affinities have a very different in vivo protective potential that is controlled by their capacity to interact with activating Fcγ receptors.


Assuntos
Anticorpos Antivirais/imunologia , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Receptores de IgG/fisiologia , Imunidade Adaptativa , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Antivirais/farmacologia , Configuração de Carboidratos , Sequência de Carboidratos , Glicosilação , Células HEK293 , Humanos , Hibridomas , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional , Proteínas da Matriz Viral/imunologia
20.
Vaccines (Basel) ; 4(4)2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27754364

RESUMO

Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA