Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Actas Urol Esp ; 38(9): 600-7, 2014 Nov.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-24958312

RESUMO

INTRODUCTION: Lynch syndrome or hereditary nonpolyposis colorectal cancer is caused by mutations in DNA repair genes, known as mismatch repair (MMR) genes, and is associated with microsatellite instability. Urothelial carcinoma of the renal pelvis is also associated with this syndrome. These genetic abnormalities have been described in sporadic forms of upper tract urothelial carcinoma (UTUC). MATERIAL AND METHOD: This was a descriptive study and survival analysis of a series of 80 patients with sporadic UTUC with no metastases at diagnosis (N0/Nx M0) treated exclusively with nephroureterectomy. We evaluated the expression of MMR genes (hMLH1, hPMS2, hMSH2 and hMSH6) in sections performed with tissue microarray (TMA) and their association with clinical-pathological parameters. We analyzed the prognostic value of the loss of expression of these genes in UTUC. RESULTS: We detected no loss of MSH2 or of MSH6, but there was a loss of MLH1 in 11 cases (13.8%) and of PMS2 in 21 cases (26.3%). The expression of hMLH1 and hPMS2 were strongly associated (P<.0001), and this phenotype expression entails significant clinical implications. The loss of MLH1 was associated with a low grade (P=.02). Loss of PMS2 was associated with a lower stage (P=.05), a pushing pattern with no invasive edges (P=.008) and less angiogenesis (P=.008). The inactivation of hPMS2 or hMLH1 is an independent protective factor (HR, 0.309) and, along with the histologic grade (HR, 5.561), defines the patients' prognosis. CONCLUSION: In our experience, the inactivation of hPMS2 or hMLH1 is an independent marker of good prognosis and occurs in a quarter of sporadic UTUC cases. The immunohistochemical study of these patients can be used to assess the screening of hidden forms of Lynch syndrome.


Assuntos
Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/mortalidade , Reparo do DNA/genética , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Pelve Renal , Feminino , Humanos , Masculino , Prognóstico , Estudos Prospectivos , Análise de Sobrevida
2.
Actas Urol Esp ; 37(6): 368-75, 2013 Jun.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-23643196

RESUMO

OBJECTIVES: We have synthesized the principal advances in the field of the study of epigenetics and specifically DNA methylation regarding the diagnosis of urological neoplasms. ACQUISITION OF EVIDENCE: Review of the literature (PubMed, MEDLINE and Cochrane) on the study of DNA methylation in urological neoplasms (prostate cancer, bladder cancer, renal cancer and testicular cancer), considering all the studies published up to January 2013. SYNTHESIS OF EVIDENCE: It was possible to determine the state of methylation of many genes in our tumor samples. When these were compared with healthy tissue samples, it was possible to define the specific aberrant methylation patterns for each type of tumor. The study and definition of specific abnormal methylation patterns of each type of tumor is a tool having potential utility for diagnosis, evaluation, prediction of prognosis and treatment of the different forms of genitourinary cancer. The analysis of gene methylation in urine after micturition or post-prostatic massage urine, semen, in the wash plasma or fluid from prostatic biopsies may allow early detection of bladder, prostate, renal and testicular cancer. In each one of the neoplasms, an epigenetic signature that may be detected in the DNA has been identified, obtained from very scarce or not at all invasive specimens, with potential in the diagnosis and evaluation of prognosis. Validation of these studies will confirm the accuracy, effectiveness and reproducibility of the results available up to now. Criteria have still not been developed that determine if a gene panel provides sufficient information in the health care practice to guide an unequivocal diagnosis or therapeutic conduct. More studies are needed to compare sensitivity, specificity, positive and negative predictive value of the test in each case. Multicenter studies analyzing the real reproducibility of these results in a clinical setting also do not exist. CONCLUSIONS: The study of aberrant DNA methylation in biological specimens of patients has an enormous potential for the early diagnosis and screening of genitourinary neoplasms. A larger number of studies is needed to be able to define the series of genes that would mean unequivocal signatures of malignancy. This methodology also has potential when defining prognostic groups and potential of response to different therapies.


Assuntos
Metilação de DNA , DNA de Neoplasias/genética , Neoplasias dos Genitais Masculinos/genética , Neoplasias Urológicas/genética , Ilhas de CpG , DNA de Neoplasias/análise , Feminino , Previsões , Genes Neoplásicos , Neoplasias dos Genitais Masculinos/diagnóstico , Neoplasias dos Genitais Masculinos/metabolismo , Humanos , Masculino , Reação em Cadeia da Polimerase/métodos , Prognóstico , Análise do Sêmen , Sensibilidade e Especificidade , Urinálise , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/urina
3.
Oncogene ; 29(3): 345-55, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19838216

RESUMO

SHP-1, a haematopoietic cell-specific tyrosine phosphatase, is also expressed in human prostate. In this study, we report that SHP-1 depletion in PC-3 cells induced by small interfering RNAs causes G1 phase cell-cycle arrest accompanied by changes in some components of the cell-cycle machinery. SHP-1 knockdown increases p27(Kip1) (p27) protein stability, its nuclear localization and p27 gene transcription. These effects could be mediated by PI3K-AKT pathway as SHP-1 interacts with PI3K regulating its activity and p110 catalytic subunit phosphorylation. The increase in p27 protein stability could also because of reduced cyclin-dependent kinase (CDK2) activity. SHP-1 knockdown decreases the CDK6 levels, inducing retinoblastoma protein hypophosphorylation, downregulation of cyclin E and thereby a decrease in the CDK2 activity. However, the codepletion of SHP-1 and p27 does not produce re-entry into the cycle, implying that p27 is not required to maintain cell-cycle arrest induced by SHP-1 depletion. The maintenance of the PC-3 cell anti-proliferative response after p27 loss could be because of mislocalization of CDK2 induced by SHP-1 knockdown. This study shows that SHP-1 depletion promotes cell-cycle arrest by modulating the activity of cell-cycle regulators and suggests that SHP-1 may be required for the proper functioning of events governing cell-cycle progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Interferência de RNA , Western Blotting , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1 , Regulação Neoplásica da Expressão Gênica , Humanos , Luciferases/genética , Luciferases/metabolismo , Masculino , Fosforilação , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fase S
4.
Oncogene ; 28(11): 1477-84, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19169274

RESUMO

Histone deacetylases (HDACs) play a key role in the regulation of gene expression and chromatin structure, and drugs targeting these enzymes might have an important impact in the treatment of human cancer. Herein, we report the characterization of (1H)-pyrroles as a new subfamily of HDAC inhibitors obtained by computational modeling of class-I human HDACs. From a functional standpoint, (1H)-pyrroles are powerful inductors of acetylation of histones H3 and H4, and restore the expression of growth-inhibitory genes. From a cellular view, these compounds cause a marked decrease in the viability of cancer cells in vitro and in vivo, associated with a cell-cycle arrest at G2/M and an inhibition of angiogenesis. Thus, (1H)-pyrroles emerge as a novel group of HDAC inhibitors with promising antitumoral features.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases , Pirróis/farmacologia , Animais , Linhagem Celular Tumoral , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos , Ácidos Hidroxâmicos/farmacologia , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncogene ; 28(6): 781-91, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19060927

RESUMO

Sirtuin 1 (Sirt1) and Sirtuin 2 (Sirt2) belong to the family of NAD+ (nicotinamide adenine dinucleotide-positive)-dependent class III histone deacetylases and are involved in regulating lifespan. As cancer is a disease of ageing, targeting Sirtuins is emerging as a promising antitumour strategy. Here we present Salermide (N-{3-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-phenyl}-2-phenyl-propionamide), a reverse amide with a strong in vitro inhibitory effect on Sirt1 and Sirt2. Salermide was well tolerated by mice at concentrations up to 100 muM and prompted tumour-specific cell death in a wide range of human cancer cell lines. The antitumour activity of Salermide was primarily because of a massive induction of apoptosis. This was independent of global tubulin and K16H4 acetylation, which ruled out a putative Sirt2-mediated apoptotic pathway and suggested an in vivo mechanism of action through Sirt1. Consistently with this, RNA interference-mediated knockdown of Sirt1, but not Sirt2, induced apoptosis in cancer cells. Although p53 has been reported to be a target of Sirt1, genetic p53 knockdowns showed that the Sirt1-dependent proapoptotic effect of Salermide is p53-independent. We were finally able to ascribe the apoptotic effect of Salermide to the reactivation of proapoptotic genes epigenetically repressed exclusively in cancer cells by Sirt1. Taken together, our results underline Salermide's promise as an anticancer drug and provide evidence for the molecular mechanism through which Sirt1 is involved in human tumorigenesis.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Naftóis/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fenilpropionatos/farmacologia , Sirtuínas/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Feminino , Genes p53 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftóis/química , Fenilpropionatos/química , Sirtuína 1 , Sirtuína 2 , Sirtuínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Oncogene ; 27(28): 4008-12, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18264134

RESUMO

Although disruption of histone modification patterns is a common hallmark of human cancer, our knowledge of the mechanistic role of histone-modifying enzymes in its generation is very limited. We have recently identified an inactivating mutation in the histone deacetylase-2 (HDAC2) in sporadic carcinomas with microsatellite instability and in tumors arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. Since HDAC2 seems to be a central player in epigenetic gene repression, we wondered whether HDAC2-truncating mutations conferred a particular expression signature on these cancer cells. Using unsupervised clustering analysis in microsatellite-unstable colorectal cancer cell lines, we have found that HDAC2 mutant cells (RKO and Co115) show a characteristically different expression microarray signature from HDAC2 wild-type cells (HCT-116, SW48, HCT-15 and LoVo). HDAC2 mutant cells exhibit upregulation of tumor-promoting genes, such as those of tyrosine kinases, mediators of cell cycle progression and angiogenic factors. The overexpression of these genes is associated with a loss of HDAC2 recruitment and a gain of histone H4 hyperacetylation in their particular 5'-end promoters, as observed by chromatin immunoprecipitation. Transfection of wild-type HDAC2 in mutant cells reverted this epigenetic pattern by repressing the transforming genes in association with HDAC2 promoter occupancy. These results suggest a role for HDAC2 mutations in human tumorigenesis through the derepression of key genes from multiple cellular transformation pathways.


Assuntos
Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/fisiologia , Mutação , Neoplasias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Análise por Conglomerados , Histona Desacetilase 2 , Histonas/metabolismo , Humanos , Repetições de Microssatélites , Neovascularização Patológica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
7.
Oncogene ; 27(25): 3556-66, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18223687

RESUMO

Methyl-cytosine-phosphate-guanine (CpG)-binding domain (MBD) proteins are bound to hypermethylated promoter CpG islands of tumor suppressor genes in human cancer cells, although a direct causal relationship at the genome-wide level between MBD presence and gene silencing remains to be demonstrated. To this end, we have inhibited the expression of MBD proteins in HeLa cells by short hairpin RNAs; and studied the functional consequences of MBD depletion using microarray-based expression analysis in conjunction with extensive bisulfite genomic sequencing and chromatin immunoprecipitation. The removal of MBDs results in a release of gene silencing associated with a loss of MBD occupancy in 5'-CpG islands without any change in the DNA methylation pattern. Our results unveil new targets for epigenetic inactivation mediated by MBDs in transformed cells, such as the cell adhesion protein gamma-parvin and the fibroblast growth factor 19, where we also demonstrate their bona fide tumor suppressor features. Our data support a fundamental role for MBD proteins in the direct maintenance of transcriptional repression of tumor suppressors and identify new candidate genes for epigenetic disruption in cancer cells.


Assuntos
Ilhas de CpG , Epigênese Genética , Inativação Gênica , Genes Supressores de Tumor , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Metilação de DNA , Fatores de Crescimento de Fibroblastos/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo
8.
Carcinogenesis ; 27(5): 1099-104, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16410262

RESUMO

The transcription factor aryl hydrocarbon receptor (AhR) has relevant functions in cell proliferation. Interestingly, the AhR can either promote or inhibit proliferation depending on the cell phenotype. Although recent data reveal potential pathways for AhR signaling in cell proliferation, the mechanisms that regulate its activity in tumor cells remain unknown. Here, we have analyzed promoter hypermethylation as a potential mechanism controlling AhR expression in human tumor cells. AhR promoter CpG methylation was sporadic in a panel of 19 tumor cell lines except for the chronic myeloid leukemia (CML) K562 and the acute lymphoblastic leukemia (ALL) REH. When compared with normal lymphocytes, REH had very low constitutive AhR expression that could be attributed to promoter hypermethylation since treatment with the DNA demethylating agent 5-aza-2'-deoxycitidine (AZA) significantly increased AhR mRNA and protein. These results in leukemia-derived cell lines were further confirmed in primary ALL, where 33% of the patients (7/21) had AhR promoter hypermethylation. Chromatin immunoprecipitation (ChIP) showed that methylation impaired binding of the transcription factor Sp1 to the AhR promoter, thus providing a mechanism for AhR downregulation in REH cells. Therefore, promoter hypermethylation represents a novel epigenetic mechanism downregulating AhR activity in hematological malignancies such as ALL.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas , Receptores de Hidrocarboneto Arílico/genética , Fator de Transcrição Sp1/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Ilhas de CpG , Decitabina , Humanos , Dados de Sequência Molecular , Ligação Proteica
10.
Endocrinology ; 141(3): 1093-9, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10698185

RESUMO

Previous results from our group have indicated that arachidonic acid decrease cAMP production through a modification of heterotrimeric G proteins. In the present study, we have characterized the high affinity GTPase activity present in Leydig cell membranes and its regulation by fatty acids. The high-affinity GTPase activity, measured as [gamma32P] GTP hydrolysis rate, was both time and protein concentration dependent. Arachidonic acid elicited a dose-dependent inhibition of enzyme activity with an IC50 = 26.7+/-1.1 microM. The existence of only two double bonds in linoleic acid is reflected by a decrease in its inhibitory activity (IC50 = 34+/-2.3 microM). Saturated fatty acids showed no effect at this level. The kinetic analysis as interpreted by Lineweaver-Burk plots, indicated that 50 microM arachidonic acid had no effect on the apparent affinity for GTP, but resulted in a 40% decreases in the maximal velocity of the reaction. Arachidonic acid modulation of GTPase activity was not attenuated by blocking eicosanoid metabolism with inhibitors of 5'-lipoxygenase, cyclooxygenase, or epoxygenase P-450. The addition of arachidonic acid to pertussis toxin-treated membranes had no effect on the enzyme activity, indicating that arachidonic acid does not modify the GTPase activity present in Galphas protein. However, ADP-ribosylation with cholera toxin followed by arachidonic acid treatment led to a further 40% inhibition when compared with cholera toxin treatment alone. These results allowed us to postulate that arachidonic acid inhibits the GTPase activity of Gi protein family. To further analyze the mechanism of arachidonic acid inhibition of GTPase activity, the effect of arachidonic acid on the [35S]GTPgammaS binding was studied. No effect of this fatty acid on GTP binding was found. Combining our previous results with those found here, we can conclude that arachidonic acid maintains Gi proteins in their active state, which in turn inhibit adenylate cyclase and results in decrease cAMP levels.


Assuntos
Ácido Araquidônico/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células Intersticiais do Testículo/enzimologia , Toxina Adenilato Ciclase , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Ciguatoxinas/farmacologia , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Guanosina Trifosfato/metabolismo , Cinética , Células Intersticiais do Testículo/efeitos dos fármacos , Masculino , Toxina Pertussis , Ratos , Ratos Sprague-Dawley , Fatores de Virulência de Bordetella/farmacologia
11.
J Cell Biochem ; 76(3): 368-75, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10649434

RESUMO

The Galpha subunits of heterotrimeric G proteins are constituted by a conserved GTPase "Ras-like" domain (RasD) and by a unique alpha-helical domain (HD). Upon GTP binding, four regions, called switch I, II, III, and IV, have been identified as undergoing structural changes. Switch I, II, and III are located in RasD and switch IV in HD. All Galpha known functions, such as GTPase activity and receptor, effector, and Gbetagamma interaction sites have been found to be localized in RasD, but little is known about the role of HD and its switch IV region. Through the construction of chimeras between human and Xenopus Gsalpha we have previously identified a HD region, encompassing helices alphaA, alphaB, and alphaC, that was responsible for the observed functional differences in their capacity to activate adenylyl cyclase (Antonelli et al. [1994]: FEBS Lett 340:249-254). Since switch IV is located within this region and contains most of the nonconservative amino acid differences between both Gsalpha proteins, in the present work we constructed two human Gsalpha mutant proteins in which we have changed four and five switch IV residues for the ones present in the Xenopus protein. Mutants M15 (hGsalphaalphaS133N, M135P, P138K, P143S) and M17 (hGsalphaalphaS133N, M135P, V137Y, P138K, P143S) were expressed in Escherichia coli, purified, and characterized by their ability to bind GTPgammaS, dissociate GDP, hydrolyze GTP, and activate adenylyl cyclase. A decreased rate of GDP release, GTPgammaS binding, and GTP hydrolysis was observed for both mutants, M17 having considerably slower kinetics than M15 for all functions tested. Reconstituted adenylyl cyclase activity with both mutants showed normal activation in the presence of AlF(4)(-), but a decreased activation with GTPgammaS, which is consistent with the lower GDP dissociating rate they displayed. These data provide new evidence on the role that HD is playing in modulating the GDP/GTP exchange of the Gsalpha subunit.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo , Sequência de Bases , Primers do DNA/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Expressão Gênica , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Técnicas In Vitro , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tripsina
12.
FEBS Lett ; 401(1): 68-72, 1997 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-9003808

RESUMO

We show that the levels and activity of the alpha-subunits of Gs and Gi proteins in plasma membrane of GH4C1 cells are regulated by the availability of mevalonate (MVA), and not by changes in cholesterol cell content. Changes in the levels of MVA, induced by modulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, determine the amount of both membrane-bound G alpha-subunits, which correlated with the activity of their effector adenylyl cyclase. Lipoprotein deficient serum (LPDS) decreases cholesterol content and increases both HMG-CoA reductase activity and G alpha-subunits in the membrane. Cholesterol and 25-hydroxycholesterol (25-HC) each repress HMG-CoA reductase and diminish G alpha-subunit levels. However, while cholesterol cell content is also decreased by 25-HC, exogenous cholesterol increases it. In addition, the decrease of both G alpha-subunits is reversed by the presence of MVA. This regulation appears to be mediated by nonsterol products generated from MVA. We assume that the first is the prenylation of the gamma-subunits, since the attachment of G alpha-subunits to the membrane is dependent on this modification. However, as neither of our treatments completely abolished protein prenylation, we conclude that another MVA derivative is required in addition to prenyl residues to the presence and activity of alpha-subunits in the membrane.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ácido Mevalônico/metabolismo , Sangue , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/farmacologia , Hidroxicolesteróis/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA