Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Neuroimage ; 119: 305-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072253

RESUMO

In this paper we introduce a covariance framework for the analysis of single subject EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. Our covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, like in combined EEG-fMRI experiments in which the correlation between EEG and fMRI signals is investigated. We use a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. We apply our method to real EEG and MEG data sets.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Ondas Encefálicas , Simulação por Computador , Feminino , Humanos , Funções Verossimilhança , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
2.
Stat Appl Genet Mol Biol ; 12(2): 143-74, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23735435

RESUMO

The process of occurrence of genomic aberrations over time in the genetic material of cancer cells reflects the progression of the cancer. Modern technologies like aCGH (array Comparative Genomic Hybridization) and MPS (Massive Parallel Sequencing) provide high-resolution measurements of DNA copy number aberrations, that reveal the full scale of genomic aberrations. A continuous time Markov chain model is proposed to describe the accumulation of aberrations over time. Time however is a latent variable (with the number of aberrations as a proxy). Integrating out time, yields the distribution of the observed DNA copy number data. The model parameters are estimated from high-dimensional DNA copy number data by means of penalized maximum pseudo- and likelihood and method of moments procedures. Having fitted the model, posterior time estimates of the advancement of each sample's cancer are obtained and the most likely locations of a sample's aberrations are predicted. The three estimation methods are compared in a simulation study. The paper closes with an application of the proposed methodology on cancer data.


Assuntos
Variações do Número de Cópias de DNA , Genômica , Modelos Estatísticos , Neoplasias/genética , Algoritmos , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Simulação por Computador , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cadeias de Markov , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA