Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chem Res Toxicol ; 37(6): 827-849, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758610

RESUMO

The attrition rate of drugs in clinical trials is generally quite high, with estimates suggesting that approximately 90% of drugs fail to make it through the process. The identification of unexpected toxicity issues during preclinical stages is a significant factor contributing to this high rate of failure. These issues can have a major impact on the success of a drug and must be carefully considered throughout the development process. These late-stage rejections or withdrawals of drug candidates significantly increase the costs associated with drug development, particularly when toxicity is detected during clinical trials or after market release. Understanding drug-biological target interactions is essential for evaluating compound toxicity and safety, as well as predicting therapeutic effects and potential off-target effects that could lead to toxicity. This will enable scientists to predict and assess the safety profiles of drug candidates more accurately. Evaluation of toxicity and safety is a critical aspect of drug development, and biomolecules, particularly proteins, play vital roles in complex biological networks and often serve as targets for various chemicals. Therefore, a better understanding of these interactions is crucial for the advancement of drug development. The development of computational methods for evaluating protein-ligand interactions and predicting toxicity is emerging as a promising approach that adheres to the 3Rs principles (replace, reduce, and refine) and has garnered significant attention in recent years. In this review, we present a thorough examination of the latest breakthroughs in drug toxicity prediction, highlighting the significance of drug-target binding affinity in anticipating and mitigating possible adverse effects. In doing so, we aim to contribute to the development of more effective and secure drugs.


Assuntos
Desenvolvimento de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Animais
2.
Sci Signal ; 17(824): eadg9256, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377179

RESUMO

High-density lipoprotein (HDL) nanoparticles promote endothelial cell (EC) function and suppress inflammation, but their utility in treating EC dysfunction has not been fully explored. Here, we describe a fusion protein named ApoA1-ApoM (A1M) consisting of apolipoprotein A1 (ApoA1), the principal structural protein of HDL that forms lipid nanoparticles, and ApoM, a chaperone for the bioactive lipid sphingosine 1-phosphate (S1P). A1M forms HDL-like particles, binds to S1P, and is signaling competent. Molecular dynamics simulations showed that the S1P-bound ApoM moiety in A1M efficiently activated EC surface receptors. Treatment of human umbilical vein ECs with A1M-S1P stimulated barrier function either alone or cooperatively with other barrier-enhancing molecules, including the stable prostacyclin analog iloprost, and suppressed cytokine-induced inflammation. A1M-S1P injection into mice during sterile inflammation suppressed neutrophil influx and inflammatory mediator secretion. Moreover, systemic A1M administration led to a sustained increase in circulating HDL-bound S1P and suppressed inflammation in a murine model of LPS-induced endotoxemia. We propose that A1M administration may enhance vascular endothelial barrier function, suppress cytokine storm, and promote resilience of the vascular endothelium.


Assuntos
Apolipoproteínas , Lipocalinas , Humanos , Camundongos , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Lipocalinas/metabolismo , Lipocalinas/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Apolipoproteínas M , Inflamação , Lipoproteínas HDL/farmacologia , Lipoproteínas HDL/metabolismo , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/metabolismo , Esfingosina
3.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328409

RESUMO

Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) is composed of four structural proteins and several accessory non-structural proteins. SARS-CoV-2's most abundant structural protein, Membrane (M) protein, has a pivotal role both during viral infection cycle and host interferon antagonism. This is a highly conserved viral protein, thus an interesting and suitable target for drug discovery. In this paper, we explain the structural nature of M protein homodimer. To do so, we developed and applied a detailed and robust in silico workflow to predict M protein dimeric structure, membrane orientation, and interface characterization. Single Nucleotide Polymorphisms (SNPs) in M protein were retrieved from over 1.2 M SARS-CoV-2 genomes and proteins from the Global Initiative on Sharing All Influenza Data (GISAID) database, 91 of which were located at the predicted dimer interface. Among those, we identified SNPs in Variants of Concern (VOC) and Variants of Interest (VOI). Binding free energy differences were evaluated for dimer interfacial SNPs to infer mutant protein stabilities. A few high-prevalent mutated residues were found to be especially relevant in VOC and VOI. This realization may be a game-changer to structure-driven formulation of new therapeutics for SARS-CoV-2.


Assuntos
Proteínas M de Coronavírus/genética , Genoma Viral/genética , Mutação , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética , Sítios de Ligação/genética , COVID-19/prevenção & controle , COVID-19/virologia , Proteínas M de Coronavírus/química , Proteínas M de Coronavírus/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , SARS-CoV-2/fisiologia
4.
Drug Resist Updat ; 60: 100811, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121338

RESUMO

Globally with over 10 million deaths per year, cancer is the most transversal disease across countries, cultures, and ethnicities, affecting both developed and developing regions. Tumorigenesis is dynamically altered by distinct events and can be lethal when untreated. Despite the innovative therapeutics available, multidrug resistance (MDR) to chemotherapy remains the major hindrance to the success of cancer therapy. The multiple mechanisms by which cancer cells evade cell death are diverse, indicating that MDR involves complex interconnected biological networks. Molecular profiling is currently able to stratify cancer into its distinct subtypes and help identify the best therapeutics, leading to "translational systems medicine". Highly specialized methodologies are generating a large amount of "omics" data - including epigenetics, genomics, transcriptomics, proteomics, metabolomics, as well as pharmacogenomics. Many of the resulting databases store data in non-standard formats, which need to be converted, interpreted, and merged into readable formats. The latest development of artificial intelligence (AI) methodologies and tools, coupled with advancements in large-scale data management and powerful graphic processing computing units, potentiate the integration of these large data sources into relevant biological networks, which will enhance our understanding of cancer MDR. In this review, we revisit common MDR mechanisms and compile a list of the most relevant "omics" public databases. We highlight examples of AI methods that are now decisively contributing to clear advances in cancer research, such as identification of new drugs from large databases and prediction of relevant drug, target, and system properties. An overview of several freely available "ready-to-use" algorithms is also provided. The described molecular scale AI algorithms and tools will undoubtedly guide important improvements in efficiency and efficacy of traditional methods of cancer diagnostics and treatment.


Assuntos
Inteligência Artificial , Neoplasias , Biologia , Resistência a Múltiplos Medicamentos/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo
5.
ACS Synth Biol ; 10(11): 3209-3235, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34736321

RESUMO

SARS-CoV-2 triggered a worldwide pandemic disease, COVID-19, for which an effective treatment has not yet been settled. Among the most promising targets to fight this disease is SARS-CoV-2 main protease (Mpro), which has been extensively studied in the last few months. There is an urgency for developing effective computational protocols that can help us tackle these key viral proteins. Hence, we have put together a robust and thorough pipeline of in silico protein-ligand characterization methods to address one of the biggest biological problems currently plaguing our world. These methodologies were used to characterize the interaction of SARS-CoV-2 Mpro with an α-ketoamide inhibitor and include details on how to upload, visualize, and manage the three-dimensional structure of the complex and acquire high-quality figures for scientific publications using PyMOL (Protocol 1); perform homology modeling with MODELLER (Protocol 2); perform protein-ligand docking calculations using HADDOCK (Protocol 3); run a virtual screening protocol of a small compound database of SARS-CoV-2 candidate inhibitors with AutoDock 4 and AutoDock Vina (Protocol 4); and, finally, sample the conformational space at the atomic level between SARS-CoV-2 Mpro and the α-ketoamide inhibitor with Molecular Dynamics simulations using GROMACS (Protocol 5). Guidelines for careful data analysis and interpretation are also provided for each Protocol.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/química , Proteínas Virais/química , Antivirais/uso terapêutico , Humanos , Ligantes
6.
BMC Bioinformatics ; 22(1): 482, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34607568

RESUMO

BACKGROUND: Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. RESULTS: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. CONCLUSIONS: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus.


Assuntos
Aprendizado Profundo , Mineração de Dados , Conhecimento
7.
Methods Mol Biol ; 2315: 3-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302667

RESUMO

Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs' structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.


Assuntos
Proteínas de Membrana/química , Algoritmos , Biologia Computacional/métodos , Simulação por Computador , Modelos Moleculares , Dobramento de Proteína
8.
Int J Mol Sci ; 21(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098424

RESUMO

Influenza (flu) is a contagious viral disease, which targets the human respiratory tract and spreads throughout the world each year. Every year, influenza infects around 10% of the world population and between 290,000 and 650,000 people die from it according to the World Health Organization (WHO). Influenza viruses belong to the Orthomyxoviridae family and have a negative sense eight-segment single-stranded RNA genome that encodes 11 different proteins. The only control over influenza seasonal epidemic outbreaks around the world are vaccines, annually updated according to viral strains in circulation, but, because of high rates of mutation and recurrent genetic assortment, new viral strains of influenza are constantly emerging, increasing the likelihood of pandemics. Vaccination effectiveness is limited, calling for new preventive and therapeutic approaches and a better understanding of the virus-host interactions. In particular, grasping the role of influenza non-structural protein 1 (NS1) and related known interactions in the host cell is pivotal to better understand the mechanisms of virus infection and replication, and thus propose more effective antiviral approaches. In this review, we assess the structure of NS1, its dynamics, and multiple functions and interactions, to highlight the central role of this protein in viral biology and its potential use as an effective therapeutic target to tackle seasonal and pandemic influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas não Estruturais Virais/imunologia , Vírion/imunologia , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Mutação , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Conformação Proteica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Vírion/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA