Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
J Cell Mol Med ; 28(9): e18274, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676362

RESUMO

TRP channels, are non-specific cationic channels that are involved in multiple physiological processes that include salivation, cellular secretions, memory extinction and consolidation, temperature, pain, store-operated calcium entry, thermosensation and functionality of the nervous system. Here we choose to look at the evidence that decisively shows how TRP channels modulate human neuron plasticity as it relates to the molecular neurobiology of sleep/circadian rhythm. There are numerous model organisms of sleep and circadian rhythm that are the results of the absence or genetic manipulation of the non-specific cationic TRP channels. Drosophila and mice that have had their TRP channels genetically ablated or manipulated show strong evidence of changes in sleep duration, sleep activity, circadian rhythm and response to temperature, noxious odours and pattern of activity during both sleep and wakefulness along with cardiovascular and respiratory function during sleep. Indeed the role of TRP channels in regulating sleep and circadian rhythm is very interesting considering the parallel roles of TRP channels in thermoregulation and thermal response with concomitant responses in growth and degradation of neurites, peripheral nerves and neuronal brain networks. TRP channels provide evidence of an ability to create, regulate and modify our sleep and circadian rhythm in a wide array of physiological and pathophysiological conditions. In the current review, we summarize previous results and novel recent advances in the understanding of calcium ion entry via TRP channels in different sleep and circadian rhythm conditions. We discuss the role of TRP channels in sleep and circadian disorders.


Assuntos
Ritmo Circadiano , Sono , Canais de Potencial de Receptor Transitório , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Animais , Humanos , Sono/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética
2.
Mol Oncol ; 18(5): 1123-1142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514909

RESUMO

Store-operated Ca2+ entry (SOCE) is a major mechanism for Ca2+ influx in colorectal cancer (CRC) cells. This mechanism, regulated by the filling state of the intracellular Ca2+ stores, is mediated by the endoplasmic reticulum Ca2+ sensors of the stromal interaction molecules (STIM) family [stromal interaction molecule 1 (STIM1) and STIM2] and the Ca2+-release-activated Ca2+ channels constituted by Orai family members, with predominance of calcium release-activated calcium channel protein 1 (Orai1). CRC cells exhibit enhanced SOCE due to remodeling of the expression of the key SOCE molecular components. The enhanced SOCE supports a variety of cancer hallmarks. Here, we show that treatment of the colorectal adenocarcinoma cell lines HT-29 and Caco-2 with inanimate Lacticaseibacillus paracasei (CECT9610) and Lactiplantibacillus plantarum (CECT9608) attenuates SOCE, although no detectable effect is seen on SOCE in normal colon mucosa cells. The effect of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics was mediated by downregulation of Orai1 and STIM1, while the expression levels of Orai3 and STIM2 remained unaltered. Treatment of HT-29 and Caco-2 cells with inanimate Lacticaseibacillus paracasei and Lactiplantibacillus plantarum impairs in vitro migration by a mechanism likely involving attenuation of focal adhesion kinase (FAK) tyrosine phosphorylation. Cell treatment with the Orai1 inhibitor synta-66 attenuates SOCE and prevents any further effect of Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics. Together, our results indicate for the first time that Lacticaseibacillus paracasei and Lactiplantibacillus plantarum postbiotics selectively exert negative effects on Ca2+ influx through SOCE in colorectal adenocarcinoma cell lines, providing evidence for an attractive strategy against CRC.


Assuntos
Cálcio , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cálcio/metabolismo , Fosforilação , Células HT29 , Células CACO-2 , Quinase 1 de Adesão Focal/metabolismo , Probióticos/farmacologia , Molécula 1 de Interação Estromal/metabolismo
3.
Br J Haematol ; 204(3): 755-756, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38073055

RESUMO

Platelets from neonates have been shown to exhibit a reduced response to physiological agonists, such as thrombin; however, the mechanism behind these findings is poorly understood. Berna-Erro et al. now provide differences in SARAF and pannexin-1 expression and function between neonatal and maternal platelets that might shed some light on the underlying mechanism. Commentary on: Berna-Erro. SARAF overexpression impairs thrombin-induced Ca2+ homeostasis in neonatal platelets. Br J Haematol 2024;204:988-1004.


Assuntos
Proteínas de Membrana , Trombina , Humanos , Recém-Nascido , Plaquetas/metabolismo , Cálcio/metabolismo , Homeostase , Proteínas de Membrana/metabolismo
4.
Sci Rep ; 13(1): 19471, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945647

RESUMO

Orai1 is the pore-forming subunit of the Ca2+-release activated Ca2+ channels that mediate store-operated Ca2+ entry (SOCE) in excitable and non-excitable cells. Two Orai1 forms have been identified in mammalian cells, the full-length variant Orai1α, and the short form Orai1ß, lacking the N-terminal 63 amino acids. Stem cells were isolated from non-tumoral breast epithelial cells of the MCF10A cell line, and the most representative ER+ , HER2 or triple negative breast cancer cell lines MCF7, SKBR3 and MDA-MB-231, respectively. Orai and TRPC family members expression was detected by RT-PCR and Western blotting. Changes in cytosolic Ca2+ concentration were analyzed by confocal microscopy using Fluo 4 and the spheroid-forming ability and self-renewal was estimated in culture plates coated with pHEMA using a cell imaging system. Here, we have characterized the expression of Orai family members and several TRPC channels at the transcript level in breast stem cells (BSC) derived from the non-tumoral breast epithelial cell line MCF10A and breast cancer stem cells (BCSC) derived from the well-known estrogen receptor positive (ER+), HER2 and triple negative cell lines MCF7, SKBR3 and MDA-MB-231, respectively. Furthermore, we have evaluated the mammosphere formation efficiency and self-renewal of the BSC and BCSC. Next, through a combination of Orai1 knockdown by iRNA and the use of MDA-MB-231 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1 is essential for mammosphere formation and self-renewal efficiency in BCSC derived from triple negative and HER2 subtypes cell cultures, while this channel has a negligible effect in BCSC derived from ER+ cells as well as in non-tumoral BSC. Both, Orai1α, and Orai1ß support SOCE in MDA-MB-231-derived BCSC with similar efficiency, as well as COX activation and mammosphere formation. These findings provide evidence of the functional role of Orai1α and Orai1ß in spheroid forming efficiency and self-renewal in breast cancer stem cells.


Assuntos
Cálcio , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio da Dieta/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Mamíferos/metabolismo
5.
Biomolecules ; 13(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37759684

RESUMO

The STIM family of proteins plays a crucial role in a plethora of cellular functions through the regulation of store-operated Ca2+ entry (SOCE) and, thus, intracellular calcium homeostasis. The two members of the mammalian STIM family, STIM1 and STIM2, are transmembrane proteins that act as Ca2+ sensors in the endoplasmic reticulum (ER) and, upon Ca2+ store discharge, interact with and activate the Orai/CRACs in the plasma membrane. Dysregulation of Ca2+ signaling leads to the pathogenesis of a variety of human diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and immune disorders. Therefore, understanding the mechanisms underlying Ca2+ signaling pathways is crucial for developing therapeutic strategies targeting these diseases. This review focuses on several rare conditions associated with STIM1 mutations that lead to either gain- or loss-of-function, characterized by myopathy, hematological and immunological disorders, among others, and due to abnormal activation of CRACs. In addition, we summarize the current evidence concerning STIM2 allele duplication and deletion associated with language, intellectual, and developmental delay, recurrent pulmonary infections, microcephaly, facial dimorphism, limb anomalies, hypogonadism, and congenital heart defects.


Assuntos
Líquidos Corporais , Doenças Cardiovasculares , Animais , Humanos , Alelos , Membrana Celular , Retículo Endoplasmático , Mamíferos
6.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569674

RESUMO

Myocardial infarction (MI) causes massive loss of cardiac myocytes and injury to the coronary microcirculation, overwhelming the limited capacity of cardiac regeneration. Cardiac repair after MI is finely organized by complex series of procedures involving a robust angiogenic response that begins in the peri-infarcted border area of the infarcted heart, concluding with fibroblast proliferation and scar formation. Efficient neovascularization after MI limits hypertrophied myocytes and scar extent by the reduction in collagen deposition and sustains the improvement in cardiac function. Compelling evidence from animal models and classical in vitro angiogenic approaches demonstrate that a plethora of well-orchestrated signaling pathways involving Notch, Wnt, PI3K, and the modulation of intracellular Ca2+ concentration through ion channels, regulate angiogenesis from existing endothelial cells (ECs) and endothelial progenitor cells (EPCs) in the infarcted heart. Moreover, cardiac repair after MI involves cell-to-cell communication by paracrine/autocrine signals, mainly through the delivery of extracellular vesicles hosting pro-angiogenic proteins and non-coding RNAs, as microRNAs (miRNAs). This review highlights some general insights into signaling pathways activated under MI, focusing on the role of Ca2+ influx, Notch activated pathway, and miRNAs in EC activation and angiogenesis after MI.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Infarto do Miocárdio , Animais , Cicatriz/patologia , Neovascularização Fisiológica/fisiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Progenitoras Endoteliais/metabolismo
7.
Biology (Basel) ; 12(7)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37508398

RESUMO

The systemic effects of physical activity are mediated by the release of IL-6 and other myokines from contracting muscle. Although the release of IL-6 from muscle has been extensively studied, the information on the cellular mechanisms is fragmentary and scarce, especially regarding the role of Ca2+ signals. The aim of this study was to characterize the role of the main components of Ca2+ signals in human skeletal muscle cells during IL-6 secretion stimulated by the Ca2+ mobilizing agonist ATP. Primary cultures were prepared from surgical samples, fluorescence microscopy was used to evaluate the Ca2+ signals and the stimulated release of IL-6 into the medium was determined using ELISA. Intracellular calcium chelator Bapta, low extracellular calcium and the Ca2+ channels blocker La3+ reduced the ATP-stimulated, but not the basal secretion. Secretion was inhibited by blockers of L-type (nifedipine, verapamil), T-type (NNC55-0396) and Orai1 (Synta66) Ca2+ channels and by silencing Orai1 expression. The same effect was achieved with inhibitors of ryanodine receptors (ryanodine, dantrolene) and IP3 receptors (xestospongin C, 2-APB, caffeine). Inhibitors of calmodulin (calmidazolium) and calcineurin (FK506) also decreased secretion. IL-6 transcription in response to ATP was not affected by Bapta or by the T channel blocker. Our results prove that ATP-stimulated IL-6 secretion is mediated at the post-transcriptional level by Ca2+ signals, including the mobilization of calcium stores, the activation of store-operated Ca2+ entry, and the subsequent activation of voltage-operated Ca2+ channels and calmodulin/calcineurin pathways.

8.
J Cell Physiol ; 238(9): 2050-2062, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37332264

RESUMO

Orai1 is the pore-forming subunit of the store-operated Ca2+ release-activated Ca2+ (CRAC) channels involved in a variety of cellular functions. Two Orai1 variants have been identified, the long form, Orai1α, containing 301 amino acids, and the short form, Orai1ß, which arises from alternative translation initiation from methionines 64 or 71, in Orai1α. Orai1 is mostly expressed in the plasma membrane, but a subset of Orai1 is located in intracellular compartments. Here we show that Ca2+ store depletion leads to trafficking and insertion of compartmentalized Orai1α in the plasma membrane via a mechanism that is independent on changes in cytosolic free-Ca2+ concentration, as demonstrated by cell loading with the fast intracellular Ca2+ chelator dimethyl BAPTA in the absence of extracellular Ca2+ . Interestingly, thapsigargin (TG) was found to be unable to induce translocation of Orai1ß to the plasma membrane when expressed individually; by contrast, when Orai1ß is co-expressed with Orai1α, cell treatment with TG induced rapid trafficking and insertion of compartmentalized Orai1ß in the plasma membrane. Translocation of Orai1 forms to the plasma membrane was found to require the integrity of the actin cytoskeleton. Finally, expression of a dominant negative mutant of the small GTPase ARF6, and ARF6-T27N, abolished the translocation of compartmentalized Orai1 variants to the plasma membrane upon store depletion. These findings provide new insights into the mechanism that regulate the plasma membrane abundance of Orai1 variants after Ca2+ store depletion.


Assuntos
Canais de Cálcio , Canais de Cálcio Ativados pela Liberação de Cálcio , Proteína ORAI1 , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Proteína ORAI1/antagonistas & inibidores , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Humanos , Células HEK293
9.
J Cell Physiol ; 238(4): 714-726, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36952615

RESUMO

Store operated Ca2+ entry (SOCE) is a cornerstone for the maintenance of intracellular Ca2+ homeostasis and the regulation of a variety of cellular functions. SOCE is mediated by STIM and Orai proteins following the activation of inositol 1,4,5-trisphosphate receptors. Then, a reduction of the endoplasmic reticulum intraluminal Ca2+ concentration is sensed by STIM proteins, which undergo a conformational change and activate plasma membrane Ca2+ channels comprised by Orai proteins. STIM1/Orai-mediated Ca2+ signals are finely regulated and modulate the activity of different transcription factors, including certain isoforms of the nuclear factor of activated T-cells, the cAMP-response element binding protein, the nuclear factor κ-light chain-enhancer of activated B cells, c-fos, and c-myc. These transcription factors associate SOCE with a plethora of signaling events and cellular functions. Here we provide an overview of the current knowledge about the role of Orai channels in the regulation of transcription factors through Ca2+ -dependent signaling pathways.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Sinalização do Cálcio , Fatores de Transcrição , Cálcio/metabolismo , Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Fatores de Transcrição/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 43(5): e151-e170, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924231

RESUMO

BACKGROUND: Altered intracellular Ca2+ homeostasis in neonatal platelets has been previously reported. This study aims to examine the changes in the Ca2+ entry through the store-operated calcium entry (SOCE) mechanism in neonatal platelets. METHODS: Human platelets from either control women, mothers, and neonates were isolated and, following, were fixed after being treated as required. Platelet samples were analyzed by Western blotting, qRT-PCR, and MALDITOF/TOF. Ca2+ homeostasis was also determined. Culture cells were used as surrogated of platelets to overexpress the proteins of interest to reproduce the alterations observed in platelets. RESULTS: Altered TG (thapsigargin)-evoked SOCE, alternative molecular weight form of STIM1 (stromal interaction molecule 1; s-STIM1 [short STIM1 isoform (478 aa)], around 60 kDa) and overexpression of SARAF (SOCE-associated regulatory factor) were found in neonatal platelets as compared to maternal and control women platelets. s-STIM1 may result due to CAPN1 (calpain1)-dependent processing, as confirmed in platelets and MEG01 cells by using calpeptin and overexpressing CAPN1, respectively. In HEK293 (STIM1 and STIM2 [stromal interaction molecule 2] double knockout) cells transfected either with c-STIM1 (canonical STIM1 [685 aa]), s-STIM1 (478), STIM1B (540), and CAPN1 overexpression plasmids, we found s-STIM1 and c-STIM1, except in cells overexpressing s-STIM1 (478) that lacked CAPN1 target residues. These results and the in silico analysis, lead us to conclude that STIM1 is cleaved at Q496 by CAPN1. Ca2+ imaging analysis and coimmunoprecipitation assay using MEG01 and HEK293 cells overexpressing SARAF together with s-STIM1 (478) reported a reduced slow Ca2+-dependent inactivation, so reproducing the Ca2+-homeostasis pattern observed in neonatal platelets. CONCLUSIONS: CAPN1 may cleave STIM1 in neonatal platelets, hence, impairing SARAF coupling after SOCE activation. s-STIM1 may avoid slow Ca2+-dependent inactivation and, subsequently, results in an enhanced TG-evoked SOCE as observed in neonatal platelets.


Assuntos
Plaquetas , Calpaína , Proteínas de Membrana , Molécula 1 de Interação Estromal , Feminino , Humanos , Recém-Nascido , Plaquetas/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calpaína/metabolismo , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
12.
J Biol Chem ; 299(2): 102882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623731

RESUMO

Store-operated Ca2+ entry is a ubiquitous mechanism for Ca2+ influx in mammalian cells that regulates a variety of physiological processes. The identification of two forms of Orai1, the predominant store-operated channel, Orai1α and Orai1ß, raises the question whether they differentially regulate cell function. Orai1α is the full-length Orai1, containing 301 amino acids, whereas Orai1ß lacks the N-terminal 63 amino acids. Here, using a combination of biochemistry and imaging combined with the use of human embryonic kidney 293 KO cells, missing the native Orai1, transfected with plasmids encoding for either Orai1α or Orai1ß, we show that Orai1α plays a relevant role in agonist-induced NF-κB transcriptional activity. In contrast, functional Orai1ß is not required for the activation of these transcription factors. The role of Orai1α in the activation of NF-κB is entirely dependent on Ca2+ influx and involves PKCß activation. Our results indicate that Orai1α interacts with PKCß2 by a mechanism involving the Orai1α exclusive AKAP79 association region, which strongly suggests a role for AKAP79 in this process. These findings provide evidence of the role of Orai1α in agonist-induced NF-κB transcriptional activity and reveal functional differences between Orai1 variants.


Assuntos
Canais de Cálcio , NF-kappa B , Proteína ORAI1 , Humanos , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , NF-kappa B/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36498894

RESUMO

Orai1, the first identified member of the Orai protein family, is ubiquitously expressed in the animal kingdom. Orai1 was initially characterized as the channel responsible for the store-operated calcium entry (SOCE), a major mechanism that allows cytosolic calcium concentration increments upon receptor-mediated IP3 generation, which results in intracellular Ca2+ store depletion. Furthermore, current evidence supports that abnormal Orai1 expression or function underlies several disorders. Orai1 is, together with STIM1, the key element of SOCE, conducting the Ca2+ release-activated Ca2+ (CRAC) current and, in association with TRPC1, the store-operated Ca2+ (SOC) current. Additionally, Orai1 is involved in non-capacitative pathways, as the arachidonate-regulated or LTC4-regulated Ca2+ channel (ARC/LRC), store-independent Ca2+ influx activated by the secretory pathway Ca2+-ATPase (SPCA2) and the small conductance Ca2+-activated K+ channel 3 (SK3). Furthermore, Orai1 possesses two variants, Orai1α and Orai1ß, the latter lacking 63 amino acids in the N-terminus as compared to the full-length Orai1α form, which confers distinct features to each variant. Here, we review the current knowledge about the differences between Orai1α and Orai1ß, the implications of the Ca2+ signals triggered by each variant, and their downstream modulatory effect within the cell.


Assuntos
Canais de Cálcio , Cálcio , Animais , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cátion TRPC/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Transporte de Íons , Sinalização do Cálcio
14.
Cells ; 11(13)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35805121

RESUMO

The overexpression of the Orai1 channel inhibits SOCE when using the Ca2+ readdition protocol. However, we found that HeLa cells overexpressing the Orai1 channel displayed enhanced Ca2+ entry and a limited ER depletion in response to the combination of ATP and thapsigargin (TG) in the presence of external Ca2+. As these effects require the combination of an agonist and TG, we decided to study whether the phosphorylation of Orai1 S27/S30 residues had any role using two different mutants: Orai1-S27/30A (O1-AA, phosphorylation-resistant) and Orai1-S27/30D (O1-DD, phosphomimetic). Both O1-wt and O1-AA supported enhanced Ca2+ entry, but this was not the case with O1-E106A (dead-pore mutant), O1-DD, and O1-AA-E106A, while O1-wt, O1-E106A, and O1-DD inhibited the ATP and TG-induced reduction of ER [Ca2+], suggesting that the phosphorylation of O1 S27/30 interferes with the IP3R activity. O1-wt and O1-DD displayed an increased interaction with IP3R in response to ATP and TG; however, the O1-AA channel decreased this interaction. The expression of mCherry-O1-AA increased the frequency of ATP-induced sinusoidal [Ca2+]i oscillations, while mCherry-O1-wt and mCherry-O1-DD decreased this frequency. These data suggest that the combination of ATP and TG stimulates Ca2+ entry, and the phosphorylation of Orai1 S27/30 residues by PKC reduces IP3R-mediated Ca2+ release.


Assuntos
Canais de Cálcio , Cálcio , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células HeLa , Humanos , Proteína ORAI1/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tapsigargina/farmacologia
15.
Cells ; 11(8)2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35456011

RESUMO

Tumors are composed by a heterogeneous population of cells. Among them, a sub-population of cells, termed cancer stem cells, exhibit stemness features, such as self-renewal capabilities, disposition to differentiate to a more proliferative state, and chemotherapy resistance, processes that are all mediated by Ca2+. Ca2+ homeostasis is vital for several physiological processes, and alterations in the patterns of expressions of the proteins and molecules that modulate it have recently become a cancer hallmark. Store-operated Ca2+ entry is a major mechanism for Ca2+ entry from the extracellular medium in non-excitable cells that leads to increases in the cytosolic Ca2+ concentration required for several processes, including cancer stem cell properties. Here, we focus on the participation of STIM, Orai, and TRPC proteins, the store-operated Ca2+ entry key components, in cancer stem cell biology and tumorigenesis.


Assuntos
Cálcio , Neoplasias , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteína ORAI1/metabolismo
16.
Cell Mol Life Sci ; 79(1): 33, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34988680

RESUMO

The identification of two variants of the canonical pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel Orai1, Orai1α and Orai1ß, in mammalian cells arises the question whether they exhibit different functional characteristics. Orai1α and Orai1ß differ in the N-terminal 63 amino acids, exclusive of Orai1α, and show different sensitivities to Ca2+-dependent inactivation, as well as distinct ability to form arachidonate-regulated channels. We have evaluated the role of both Orai1 variants in the activation of TRPC1 in HeLa cells. We found that Orai1α and Orai1ß are required for the maintenance of regenerative Ca2+ oscillations, while TRPC1 plays a role in agonist-induced Ca2+ influx but is not essential for Ca2+ oscillations. Using APEX2 proximity labeling, co-immunoprecipitation and the fluorescence of G-GECO1.2 fused to Orai1α our results indicate that agonist stimulation and Ca2+ store depletion enhance Orai1α-TRPC1 interaction. Orai1α is essential for TRPC1 plasma membrane location and activation. Thus, TRPC1 function in HeLa cells depends on Ca2+ influx through Orai1α exclusively.


Assuntos
Membrana Celular/metabolismo , Proteína ORAI1/metabolismo , Canais de Cátion TRPC/metabolismo , Cálcio/metabolismo , Cátions , Células HeLa , Humanos , Proteínas Mutantes/metabolismo , Ligação Proteica , Molécula 1 de Interação Estromal/metabolismo
17.
Cancers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36612199

RESUMO

N-linked glycosylation is a post-translational modification that affects protein function, structure, and interaction with other proteins. The store-operated Ca2+ entry (SOCE) core proteins, Orai1 and STIM1, exhibit N-glycosylation consensus motifs. Abnormal SOCE has been associated to a number of disorders, including cancer, and alterations in Orai1 glycosylation have been related to cancer invasiveness and metastasis. Here we show that treatment of non-tumoral breast epithelial cells with tunicamycin attenuates SOCE. Meanwhile, tunicamycin was without effect on SOCE in luminal MCF7 and triple negative breast cancer (TNBC) MDA-MB-231 cells. Ca2+ imaging experiments revealed that expression of the glycosylation-deficient Orai1 mutant (Orai1N223A) did not alter SOCE in MCF10A, MCF7 and MDA-MB-231 cells. However, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) significantly attenuated SOCE in MCF10A cells but was without effect in SOCE in MCF7 and MDA-MB-231 cells. In non-tumoral cells impairment of STIM1 N-linked glycosylation attenuated thapsigargin (TG)-induced caspase-3 activation while in breast cancer cells, which exhibit a smaller caspase-3 activity in response to TG, expression of the non-glycosylable STIM1 mutant (STIM1N131/171Q) was without effect on TG-evoked caspase-3 activation. Summarizing, STIM1 N-linked glycosylation is essential for full SOCE activation in non-tumoral breast epithelial cells; by contrast, SOCE in breast cancer MCF7 and MDA-MB-231 cells is insensitive to Orai1 and STIM1 N-linked glycosylation, and this event might participate in the development of apoptosis resistance.

18.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768857

RESUMO

The mammalian exclusive Orai3 channel participates in the generation and/or modulation of two independent Ca2+ currents, the store-operated current, Icrac, involving functional interactions between the stromal interaction molecules (STIM), STIM1/STIM2, and Orai1/Orai2/Orai3, as well as the store-independent arachidonic acid (AA) (or leukotriene C4)-regulated current Iarc, which involves Orai1, Orai3 and STIM1. Overexpression of functional Orai3 has been described in different neoplastic cells and cancer tissue samples as compared to non-tumor cells or normal adjacent tissue. In these cells, Orai3 exhibits a cell-specific relevance in Ca2+ influx. In estrogen receptor-positive breast cancer cells and non-small cell lung cancer (NSCLC) cells store-operated Ca2+ entry (SOCE) is strongly dependent on Orai3 expression while in colorectal cancer and pancreatic adenocarcinoma cells Orai3 predominantly modulates SOCE. On the other hand, in prostate cancer cells Orai3 expression has been associated with the formation of Orai1/Orai3 heteromeric channels regulated by AA and reduction in SOCE, thus leading to enhanced proliferation. Orai3 overexpression is associated with supporting several cancer hallmarks, including cell cycle progression, proliferation, migration, and apoptosis resistance. This review summarizes the current knowledge concerning the functional role of Orai3 in the pathogenesis of cancer.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Neoplasias/patologia , Animais , Apoptose/fisiologia , Cálcio/metabolismo , Canais de Cálcio/genética , Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos
19.
Cancers (Basel) ; 13(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34439314

RESUMO

Breast cancer is among the most common malignancies in women. From the molecular point of view, breast cancer can be grouped into different categories, including the luminal (estrogen receptor positive (ER+)) and triple negative subtypes, which show distinctive features and, thus, are sensitive to different therapies. Breast cancer cells are strongly dependent on Ca2+ influx. Store-operated Ca2+ entry (SOCE) has been found to support a variety of cancer hallmarks including cell viability, proliferation, migration, and metastasis. The Ca2+ channels of the Orai family and the endoplasmic reticulum Ca2+ sensor STIM1 are the essential components of SOCE, but the extent of Ca2+ influx is fine-tuned by several regulatory proteins, such as the STIM1 modulators SARAF and EFHB. Here, we show that the expression and/or function of SARAF and EFHB is altered in breast cancer cells and both proteins are required for cell proliferation, migration, and viability. EFHB expression is upregulated in luminal and triple negative breast cancer (TNBC) cells and is essential for full SOCE in these cells. SARAF expression was found to be similar in breast cancer and pre-neoplastic breast epithelial cells, and SARAF knockdown was found to result in enhanced SOCE in pre-neoplastic and TNBC cells. Interestingly, silencing SARAF expression in ER+ MCF7 cells led to attenuation of SOCE, thus suggesting a distinctive role for SARAF in this cell type. Finally, we used a combination of approaches to show that molecular knockdown of SARAF and EFHB significantly attenuates the ability of breast cancer cells to proliferate and migrate, as well as cell viability. In aggregate, SARAF and EFHB are required for the fine modulation of SOCE in breast cancer cells and play an important role in the maintenance of proliferation, migration, and viability in these cells.

20.
Cells ; 10(6)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070268

RESUMO

The interplay between the Ca2+-sensitive adenylyl cyclase 8 (AC8) and Orai1 channels plays an important role both in the activation of the cAMP/PKA signaling and the modulation of Orai1-dependent Ca2+ signals. AC8 interacts with a N-terminal region that is exclusive to the Orai1 long variant, Orai1α. The interaction between both proteins allows the Ca2+ that enters the cell through Orai1α to activate the generation of cAMP by AC8. Subsequent PKA activation results in Orai1α inactivation by phosphorylation at serine-34, thus shaping Orai1-mediated cellular functions. In breast cancer cells, AC8 plays a relevant role supporting a variety of cancer hallmarks, including proliferation and migration. Breast cancer cells overexpress AC8, which shifts the AC8-Orai1 stoichiometry in favor of the former and leads to the impairment of PKA-dependent Orai1α inactivation. This mechanism contributes to the enhanced SOCE observed in triple-negative breast cancer cells. This review summarizes the functional interaction between AC8 and Orai1α in normal and breast cancer cells and its relevance for different cancer features.


Assuntos
Adenilil Ciclases/metabolismo , Proteína ORAI1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA