RESUMO
Angiogenesis induction is a hallmark of cancer. Antiangiogenic properties of Xanthohumol (XN), a naturally occurring prenylated chalcone from hops, have been widely reported. Here we describe the synthesis and study the antiangiogenic activity in vitro of a series of XN derivatives, where different substituents on the B-ring of the chalcone scaffold were inserted. The new XN derivatives inhibited human umbilical-vein endothelial cell (HUVEC) proliferation, adhesion, migration, invasion and their ability to form capillary-like structures in vitro at 10 µM concentration. The preliminary results indicate that the phenolic OH group in R, present in natural XN, is not necessary for having antiangiogenic activity. In fact, the most effective compound from this series, 13, was characterized by a para-methoxy group in R and a fluorine atom in R2 on B-ring. This study paves the way for future development of synthetic analogues of XN to be used as cancer angiopreventive and chemopreventive agents.
Assuntos
Inibidores da Angiogênese/farmacologia , Chalcona/farmacologia , Flavonoides/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Propiofenonas/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Chalcona/síntese química , Chalcona/química , Relação Dose-Resposta a Droga , Flavonoides/síntese química , Flavonoides/química , Humanos , Estrutura Molecular , Propiofenonas/síntese química , Propiofenonas/química , Relação Estrutura-AtividadeRESUMO
Protein homodimers play important roles in physiological and pathological processes, including cancer invasion and metastasis. Recently, MMP-9 natural homodimerization via the PEX domain has been correlated with high migration rates of aggressive cancer cells. Here we propose that bifunctional MMP-9 inhibitors designed to impair natural MMP-9 homodimerization promoted by PEX-PEX interactions might be an effective tool to fight cancer cell invasion. Elaborating a previously described dimeric hydroxamate inhibitor 1, new ligands were synthesized with different linker lengths and branch points. Evaluation of the modified bifunctional ligands by X-ray crystallography and biological assays showed that 7 and 8 could reduce invasion in three glioma cell lines expressing MMP-9 at different levels. To rationalize these results, we present a theoretical model of full-length MMP-9 in complex with 7. This pioneering study suggests that a new approach using MMP-9 selective bifunctional inhibitors might lead to an effective therapy to reduce cancer cell invasion.
RESUMO
Matrix metalloproteinase-12 (MMP-12) can be considered an attractive target to study selective inhibitors useful in the development of new therapies for lung and cardiovascular diseases. In this study, a new series of arylsulfonamide carboxylates, with increased hydrophilicity resulting from conjugation with a ß-N-acetyl-d-glucosamine moiety, were designed and synthesized as MMP-12 selective inhibitors. Their inhibitory activity was evaluated on human MMPs by using the fluorimetric assay, and a crystallographic analysis was performed to characterize their binding mode. Among these glycoconjugates, a nanomolar MMP-12 inhibitor with improved water solubility, compound 3 [(R)-2-(N-(2-(3-(2-acetamido-2-deoxy-ß-d-glucopyranosyl)thioureido)ethyl)biphenyl-4-ylsulfonamido)-3-methylbutanoic acid], was identified.
Assuntos
Acetilglucosamina/análogos & derivados , Glucosídeos/síntese química , Metaloproteinase 12 da Matriz/química , Inibidores de Metaloproteinases de Matriz/síntese química , Sulfonamidas/síntese química , Acetilglucosamina/síntese química , Acetilglucosamina/química , Domínio Catalítico , Glucosídeos/química , Humanos , Metaloproteinase 9 da Matriz/química , Inibidores de Metaloproteinases de Matriz/química , Solubilidade , Sulfonamidas/química , Tioureia/análogos & derivados , Tioureia/síntese química , Tioureia/química , Triazóis/síntese química , Triazóis/química , Água/químicaRESUMO
Mixed cryoprotectants have been developed for the solubilization of ligands for crystallization of protein-ligand complexes and for crystal soaking. Low affinity lead compounds with poor solubility are problematic for structural studies. Complete ligand solubilization is required for co-crystallization and crystal soaking experiments to obtain interpretable electron density maps for the ligand. Mixed cryo-preserving compounds are needed prior to X-ray data collection to reduce radiation damage at synchrotron sources. Here we present dual-use mixes that act as cryoprotectants and also promote the aqueous solubility of hydrophobic ligands. Unlike glycerol that increases protein solubility and can cause crystal melting the mixed solutions of cryo-preserving compounds that include precipitants and solubilizers, allow for worry-free crystal preservation while simultaneously solubilizing relatively hydrophobic ligands, typical of ligands obtained in high-throughput screening. The effectiveness of these mixture has been confirmed on a human transthyretin crystals both during crystallization and in flash freezing of crystals.