Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Genomics ; 12: 14-18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164508

RESUMO

Phytophthora citrophthora is an oomycete pathogen that infects citrus. Its occurrence in citrus-growing regions worldwide is considered a major contributor to crop losses. This study presents a high-quality genome resource for P. citrophthora, which was generated using PacBio HiFi long-read high-throughput sequencing technology. We successfully assembled a 48.5 Mb genome containing 16,409 protein-coding genes from high-quality reads. This marks the first complete genome assembly of P. citrophthora, providing a valuable resource to enhance the understanding of pathogenic behaviour and fungicide sensitivity of this destructive citrus pathogen.

2.
PLoS One ; 15(7): e0236110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687514

RESUMO

Banana is an important food crop and source of income in Africa. Sustainable production of banana, however, is at risk because of pests and diseases such as Fusarium wilt, caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). Foc can be disseminated from infested to disease-free fields in plant material, water and soil. Early detection of Foc using DNA technologies is thus required to accurately identify the fungus and prevent its further dissemination with plants, soil and water. In this study, quantitative (q)PCR assays were developed for the detection of Foc Lineage VI strains found in central and eastern Africa (Foc races 1 and 2), Foc TR4 (vegetative compatibility groups (VCG) 01213/16) that is present in Mozambique, and Foc STR4 (VCG 0120/15) that occurs in South Africa. A collection of 127 fungal isolates were selected for specificity testing, including endophytic Fusarium isolates from banana pseudostems, non-pathogenic F. oxysporum strains and Foc isolates representing the 24 VCGs in Foc. Primer sets that proved to be specific to Foc Lineage VI, Foc TR4 and Foc STR4 were used to produce standard curves for absolute quantification, and the qPCR assays were evaluated based on the quality of standard curves, repeatability and reproducibility, and limits of quantification (LOQ) and detection (LOD). The qPCR assays for Foc Lineage VI, TR4 and STR4 were repeatable and reproducible, with LOQ values of 10-3-10-4 ng/µL and a LOD of 10-4-10-5 ng/µL. The quantitative detection of Foc strains in Africa could reduce the time and improve the accuracy for identifying the Fusarium wilt pathogen from plants, water and soil on the continent.


Assuntos
Fusarium/isolamento & purificação , Musa/microbiologia , Microbiologia do Solo , Microbiologia da Água , África , Fusarium/genética , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase
3.
Toxins (Basel) ; 12(5)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455651

RESUMO

The identity of the fungi responsible for fruitlet core rot (FCR) disease in pineapple has been the subject of investigation for some time. This study describes the diversity and toxigenic potential of fungal species causing FCR in La Reunion, an island in the Indian Ocean. One-hundred-and-fifty fungal isolates were obtained from infected and healthy fruitlets on Reunion Island and exclusively correspond to two genera of fungi: Fusarium and Talaromyces. The genus Fusarium made up 79% of the isolates, including 108 F. ananatum, 10 F. oxysporum, and one F. proliferatum. The genus Talaromyces accounted for 21% of the isolated fungi, which were all Talaromyces stollii. As the isolated fungal strains are potentially mycotoxigenic, identification and quantification of mycotoxins were carried out on naturally or artificially infected diseased fruits and under in vitro cultures of potential toxigenic isolates. Fumonisins B1 and B2 (FB1-FB2) and beauvericin (BEA) were found in infected fruitlets of pineapple and in the culture media of Fusarium species. Regarding the induction of mycotoxin in vitro, F.proliferatum produced 182 mg kg⁻1 of FB1 and F. oxysporum produced 192 mg kg⁻1 of BEA. These results provide a better understanding of the causal agents of FCR and their potential risk to pineapple consumers.


Assuntos
Ananas/microbiologia , Frutas/microbiologia , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Talaromyces/isolamento & purificação , Depsipeptídeos/metabolismo , Fumonisinas/metabolismo , Fusarium/classificação , Fusarium/genética , Fusarium/metabolismo , Hidroxibenzoatos/metabolismo , Complexos Multienzimáticos/metabolismo , Filogenia , Talaromyces/classificação , Talaromyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA