Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hypertension ; 75(4): 1110-1116, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32078412

RESUMO

A key finding supporting a causal role of the immune system in the pathogenesis of hypertension is the observation that RAG1 knockout mice on a C57Bl/6J background (B6.Rag1-/-), which lack functional B and T cells, develop a much milder hypertensive response to Ang II (angiotensin II) than control C57Bl/6J mice. Here, we report that we never observed any Ang II resistance of B6.Rag1-/- mice purchased directly from the Jackson Laboratory as early as 2009. B6.Rag1-/- mice displayed nearly identical blood pressure increases monitored via radiotelemetry and hypertensive end-organ damage in response to different doses of Ang II and different levels of salt intake (0.02%, 0.3%, and 3% NaCl diet). Similarly, restoration of T-cell immunity by adoptive cell transfer did not affect the blood pressure response to Ang II in B6.Rag1-/- mice. Full development of the hypertension-resistant phenotype in B6.Rag1-/- mice appears to depend on the action of yet unidentified nongenetic modifiers in addition to the absence of functional T cells.


Assuntos
Angiotensina II , Proteínas de Homeodomínio/genética , Hipertensão/induzido quimicamente , Fenótipo , Animais , Modelos Animais de Doenças , Hipertensão/genética , Masculino , Camundongos , Camundongos Knockout
2.
Br J Pharmacol ; 176(12): 2002-2014, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30270435

RESUMO

BACKGROUND AND PURPOSE: The adaptive immune response and IL-17A contribute to renal damage in several experimental models of renal injury. EXPERIMENTAL APPROACH: To evaluate the role of the adaptive immune response, 5/6 nephrectomy was performed in wildtype DBA/1J mice and in recombination-activating gene-1 (RAG-1) deficient mice that lack B and T-cells. To assess the role of IL-17A, we carried out 5/6 nephrectomy in IL-17A deficient mice. Flow cytometric analysis, immunohistochemistry and RT-PCR were used. KEY RESULTS: Infiltration of CD3+ T-cells in the remnant kidney was increased after 5/6 nephrectomy in wildtype mice, along with a robust induction of IL-17A production in CD4+ T and γδ T-cells. After 5/6 nephrectomy, wildtype mice developed albuminuria in the nephrotic range over 10 weeks. This was accompanied by severe glomerular sclerosis and tubulointerstitial injury, and as well as renal mRNA expression of markers of inflammation and fibrosis (the chemokine CCL2, plasminogen activator inhibitor-1; PAI-1 and neutrophil gelatinase-associated lipocalin; NGAL). Unexpectedly, RAG-1 deficient mice and IL-17A deficient mice developed renal injury, similar to that in wildtype mice. No differences were found for albuminuria, glomerular sclerosis, tubulointerstitial injury and mRNA expression of CCL2, PAI-1 and NGAL. Mortality did not differ between the three groups. CONCLUSIONS AND IMPLICATIONS: Numbers of CD3+ T-cells and IL-17A+ lymphocytes infiltrating the kidney were increased after 5/6 nephrectomy. In contrast to other experimental models of renal injury, genetic deficiency of the adaptive immune system or of IL-17A did not attenuate induction or progression of chronic kidney disease after 5/6 nephrectomy. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.


Assuntos
Imunidade Adaptativa/imunologia , Interleucina-17/imunologia , Nefrectomia , Insuficiência Renal Crônica/cirurgia , Animais , Interleucina-17/deficiência , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Insuficiência Renal Crônica/imunologia
3.
Am J Physiol Renal Physiol ; 315(6): F1526-F1535, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207169

RESUMO

The role of CX3CR1, also known as fractalkine receptor, in hypertension is unknown. The present study determined the role of the fractalkine receptor CX3CR1 in hypertensive renal and cardiac injury. Expression of CX3CR1 was determined using CX3CR1GFP/+ mice that express a green fluorescent protein (GFP) reporter in CX3CR1+ cells. FACS analysis of leukocytes isolated from the kidney showed that 34% of CD45+ cells expressed CX3CR1. Dendritic cells were the majority of positive cells (67%) followed by macrophages (10%), NK cells (6%), and T cells (10%). With the use of confocal microscopy, the receptor was detected in the kidney only on infiltrating cells but not on resident renal cells. To evaluate the role of CX3CR1 in hypertensive end-organ injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of angiotensin II (ANG II, 1.5 ng·g-1·min-1) and a high-salt diet in wild-type ( n = 15) and CX3CR1-deficient mice ( n = 18). CX3CR1 deficiency reduced the number of renal dendritic cells and increased the numbers of renal CD11b/F4/80+ macrophages and CD11b/Ly6G+ neutrophils in ANG II-infused mice. Surprisingly, CX3CR1-deficient mice exhibited increased albuminuria, glomerular injury, and reduced podocyte density in spite of similar levels of arterial hypertension. In contrast, cardiac damage as assessed by increased heart weight, cardiac fibrosis, and expression of fetal genes, and matrix components were not different between both genotypes. Our findings suggest that CX3CR1 exerts protective properties by modulating the invasion of inflammatory cells in hypertensive renal injury. CX3CR1 inhibition should be avoided in hypertension because it may promote hypertensive renal injury.


Assuntos
Angiotensina II , Pressão Arterial , Receptor 1 de Quimiocina CX3C/metabolismo , Células Dendríticas/metabolismo , Hipertensão/metabolismo , Nefropatias/prevenção & controle , Rim/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Albuminúria/metabolismo , Albuminúria/fisiopatologia , Albuminúria/prevenção & controle , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Células Matadoras Naturais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/patologia
4.
Kidney Int ; 93(1): 110-127, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28754552

RESUMO

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a major deubiquitinating enzyme of the nervous system and associated with the development of neurodegenerative diseases. We have previously shown that UCH-L1 is found in tubular and parietal cells of the kidney and is expressed de novo in injured podocytes. Since the role of UCH-L1 in the kidney is unknown we generated mice with a constitutive UCH-L1-deficiency to determine its role in renal health and disease. UCH-L1-deficient mice developed proteinuria, without gross changes in glomerular morphology. Tubular cells, endothelial cells, and podocytes showed signs of stress with an accumulation of oxidative-modified and polyubiquitinated proteins. Mechanistically, abnormal protein accumulation resulted from an altered proteasome abundance leading to decreased proteasomal activity, a finding exaggerated after induction of anti-podocyte nephritis. UCH-L1-deficient mice exhibited an exacerbated course of disease with increased tubulointerstitial and glomerular damage, acute renal failure, and death, the latter most likely a result of general neurologic impairment. Thus, UCH-L1 is required for regulated protein degradation in the kidney by controlling proteasome abundance. Altered proteasome abundance renders renal cells, particularly podocytes and endothelial cells, susceptible to injury.


Assuntos
Glomerulonefrite/enzimologia , Doenças do Complexo Imune/enzimologia , Podócitos/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Hipotensão/enzimologia , Hipotensão/genética , Doenças do Complexo Imune/genética , Doenças do Complexo Imune/imunologia , Doenças do Complexo Imune/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Knockout , Oxirredução , Podócitos/imunologia , Podócitos/patologia , Proteinúria/enzimologia , Proteinúria/genética , Proteólise , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/genética , Ubiquitinação
5.
Am J Physiol Renal Physiol ; 310(11): F1356-65, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27053686

RESUMO

Adaptive and innate immune responses contribute to hypertension and hypertensive end-organ damage. Here, we determined the role of anaphylatoxin C5a, a major inflammatory effector of the innate immune system that is generated in response to complement activation, in hypertensive end-organ damage. For this purpose, we assessed the phenotype of C5a receptor 1 (C5aR1)-deficient mice in ANG II-induced renal and cardiac injury. Expression of C5aR1 on infiltrating and resident renal as well as cardiac cells was determined using a green fluorescent protein (GFP)-C5aR1 reporter knockin mouse. Flow cytometric analysis of leukocytes isolated from the kidney of GFP-C5aR1 reporter mice showed that 28% of CD45-positive cells expressed C5aR1. Dendritic cells were identified as the major C5aR1-expressing population (88.5%) followed by macrophages and neutrophils. Using confocal microscopy, we detected C5aR1 in the kidney mainly on infiltrating cells. In the heart, only infiltrating cells stained C5aR1 positive. To evaluate the role of C5aR1 deficiency in hypertensive injury, an aggravated model of hypertension was used. Unilateral nephrectomy was performed followed by infusion of ANG II (1.5 ng·g(-1)·min(-1)) and salt in wild-type (n = 34) and C5aR1-deficient mice (n = 32). C5aR1-deficient mice exhibited less renal injury, as evidenced by significantly reduced albuminuria. In contrast, cardiac injury was accelerated with significantly increased cardiac fibrosis and heart weight in C5aR1-deficient mice after ANG II infusion. No effect was found on blood pressure. In summary, the C5a:C5aR1 axis drives end-organ damage in the kidney but protects from the development of cardiac fibrosis and hypertrophy in experimental ANG II-induced hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Rim/patologia , Miocárdio/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Angiotensina II , Animais , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Rim/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/patologia , Receptor da Anafilatoxina C5a/genética
6.
Lab Invest ; 94(8): 863-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25046440

RESUMO

Binding of renin and prorenin to the (pro)renin receptor (PRR) increases their enzymatic activity and upregulates the expression of pro-fibrotic genes in vitro. Expression of PRR is increased in the heart and kidney of hypertensive and diabetic animals, but its causative role in organ damage is still unclear. To determine whether increased expression of PRR is sufficient to induce cardiac or renal injury, we generated a mouse that constitutively overexpresses PRR by knocking-in the Atp6ap2/PRR gene in the hprt locus under the control of a CMV immediate early enhancer/chicken beta-actin promoter. Mice were backcrossed in the C57Bl/6 and FVB/N strain and studied at the age of 12 months. In spite of a 25- to 80-fold renal and up to 400-fold cardiac increase in Atp6ap2/PRR expression, we found no differences in systolic blood pressure or albuminuria between wild-type and PRR overexpressing littermates. Histological examination did not show any renal or cardiac fibrosis in mutant mice. This was supported by real-time PCR analysis of inflammatory markers as well as of pro-fibrotic genes in the kidney and collagen in cardiac tissue. To determine whether the concomitant increase of renin would trigger fibrosis, we treated PRR overexpressing mice with the angiotensin receptor-1 blocker losartan over a period of 6 weeks. Renin expression increased eightfold in the kidney but no renal injury could be detected. In conclusion, our results suggest no major role for PRR in organ damage per se or related to its function as a receptor of renin.


Assuntos
Ventrículos do Coração/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Insuficiência Renal/metabolismo , Disfunção Ventricular/metabolismo , Albuminúria/etiologia , Albuminúria/metabolismo , Albuminúria/patologia , Albuminúria/urina , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Feminino , Fibrose , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Hemizigoto , Heterozigoto , Homozigoto , Hipertensão/etiologia , Hipertensão/patologia , Hipertensão/urina , Mediadores da Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Losartan/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/genética , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/etiologia , Insuficiência Renal/patologia , Renina/química , Renina/metabolismo , Regulação para Cima/efeitos dos fármacos , Disfunção Ventricular/induzido quimicamente , Disfunção Ventricular/etiologia , Disfunção Ventricular/patologia , Receptor de Pró-Renina
7.
Am J Physiol Renal Physiol ; 307(4): F407-17, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990898

RESUMO

Myeloperoxidase (MPO) is an enzyme expressed in neutrophils and monocytes/macrophages. Beside its well-defined role in innate immune defence, it may also be responsible for tissue damage. To identify the role of MPO in the progression of chronic kidney disease (CKD), we investigated CKD in a model of renal ablation in MPO knockout and wild-type mice. CKD was induced by 5/6 nephrectomy. Mice were followed for 10 wk to evaluate the impact of MPO deficiency on renal morbidity. Renal ablation induced CKD in wild-type mice with increased plasma levels of MPO compared with controls. No difference was found between MPO-deficient and wild-type mice regarding albuminuria 1 wk after renal ablation, indicating similar acute responses to renal ablation. Over the next 10 wk, however, MPO-deficient mice developed significantly less albuminuria and glomerular injury than wild-type mice. This was accompanied by a significantly lower renal mRNA expression of the fibrosis marker genes plasminogen activator inhibitor-I, collagen type III, and collagen type IV as well as matrix metalloproteinase-2 and matrix metalloproteinase-9. MPO-deficient mice also developed less renal inflammation after renal ablation, as indicated by a lower infiltration of CD3-positive T cells and F4/80-positive monocytes/macrophages compared with wild-type mice. In vitro chemotaxis of monocyte/macrophages isolated from MPO-deficient mice was impaired compared with wild-type mice. No significant differences were observed for mortality and blood pressure after renal ablation. In conclusion, these results demonstrate that MPO deficiency ameliorates renal injury in the renal ablation model of CKD in mice.


Assuntos
Erros Inatos do Metabolismo/fisiopatologia , Insuficiência Renal Crônica/prevenção & controle , Animais , Autofagia/fisiologia , Quimiotaxia de Leucócito/fisiologia , Masculino , Camundongos , Camundongos Knockout , Nefrectomia , Peroxidase/sangue , Insuficiência Renal Crônica/patologia
8.
Hypertension ; 63(3): 565-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366079

RESUMO

T cells participate in angiotensin II (Ang II)-induced hypertension. However, the specific subsets of T cells that are important in the end-organ damage are unknown. T-helper 17 cells are a recently identified subset that produces interleukin 17 (IL-17) and requires interleukin 23 (IL-23) for expansion. To evaluate the role of the T-helper 17 immune response in hypertensive renal and cardiac end-organ damage, hypertension was induced with deoxycorticosterone acetate (DOCA)+Ang II in wild-type (n=39) and IL-17-deficient (n=31) mice. The injury was evaluated at day 4 and day 14. To inactivate the IL-17/IL-23 axis at a different point, DOCA+Ang II hypertension was also induced in IL-23p19-deficient mice. Renal infiltration by T-helper 17 cells was increased in hypertensive wild-type mice. Systolic blood pressure did not differ between hypertensive IL-17-deficient and wild-type mice. Three days after induction of hypertension, a significantly higher albuminuria was found in IL-17-deficient than in wild-type mice (196±64 versus 58±16 mg/mg albumin/creatinine). Histology revealed significantly more glomerular injury (1.04±0.06 versus 0.67±0.05) and renal infiltration of γδ T cells in IL-17-deficient than in wild-type mice after 14 days. Similarly, significantly higher albuminuria, glomerular injury, and γδ T cell infiltration were found in IL-23p19-deficient mice with DOCA+Ang II-induced hypertension. DOCA+Ang II also induced cardiac damage as assessed by heart weight, cardiac fibrosis, as well as expression of fetal genes and matrix components, but no significant differences were found among IL-17(-/-), IL-23p19(-/-), and wild-type mice. IL-17/IL-23 deficiency accelerates DOCA+Ang II-induced albuminuria and hypertensive renal but not cardiac end-organ damage.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Interleucina-17/deficiência , Nefropatias/metabolismo , Angiotensina II/toxicidade , Animais , Acetato de Desoxicorticosterona/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Nefropatias/etiologia , Nefropatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
9.
Artigo em Inglês | MEDLINE | ID: mdl-23802100

RESUMO

Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection.


Assuntos
Células Dendríticas/microbiologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Sepse/imunologia , Sepse/microbiologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Estruturas Animais/microbiologia , Animais , Carga Bacteriana , Células Dendríticas/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/microbiologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Pneumonia Pneumocócica/complicações , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA