Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neuroimmunol ; 382: 578170, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579546

RESUMO

Thymic and bone marrow outputs were evaluated in 13 sequential samples of 68 multiple sclerosis patients who initiated alemtuzumab and were clinically followed for 48 months. Three months after alemtuzumab infusions, the levels of new T lymphocytes were significantly reduced, but progressively increased reaching the highest values at 36 months, indicating the remarkable capacity of thymic function recovery. Newly produced B cells exceeded baseline levels as early as 3 months after alemtuzumab initiation. Heterogeneous patterns of new T- and B-cell recovery were identified, but without associations with age, sex, previous therapies, development of secondary autoimmunity or infections, and disease re-emergence. Trial registration version 2.0-27/01/2016.


Assuntos
Esclerose Múltipla , Humanos , Alemtuzumab/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Medula Óssea , Relevância Clínica , Linfócitos T
2.
Biochem J ; 436(2): 331-9, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21410432

RESUMO

CARM1 (co-activator-associated arginine methyltransferase 1) is a PRMT (protein arginine N-methyltransferase) family member that catalyses the transfer of methyl groups from SAM (S-adenosylmethionine) to the side chain of specific arginine residues of substrate proteins. This post-translational modification of proteins regulates a variety of transcriptional events and other cellular processes. Moreover, CARM1 is a potential oncological target due to its multiple roles in transcription activation by nuclear hormone receptors and other transcription factors such as p53. Here, we present crystal structures of the CARM1 catalytic domain in complex with cofactors [SAH (S-adenosyl-L-homocysteine) or SNF (sinefungin)] and indole or pyazole inhibitors. Analysis of the structures reveals that the inhibitors bind in the arginine-binding cavity and the surrounding pocket that exists at the interface between the N- and C-terminal domains. In addition, we show using ITC (isothermal titration calorimetry) that the inhibitors bind to the CARM1 catalytic domain only in the presence of the cofactor SAH. Furthermore, sequence differences for select residues that interact with the inhibitors may be responsible for the CARM1 selectivity against PRMT1 and PRMT3. Together, the structural and biophysical information should aid in the design of both potent and specific inhibitors of CARM1.


Assuntos
Indóis/antagonistas & inibidores , Indóis/química , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Pirazóis/antagonistas & inibidores , Pirazóis/química , Sequência de Aminoácidos , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/metabolismo , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Proteína-Arginina N-Metiltransferases/metabolismo , Pirazóis/metabolismo
3.
Cancer Res ; 67(17): 7987-90, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17804707

RESUMO

Mutations in the kinase domain of Bcr-Abl are the most common cause of resistance to therapy with imatinib in patients with chronic myelogenous leukemia (CML). Second-generation Bcr-Abl inhibitors are able to overcome most imatinib-resistant mutants, with the exception of the frequent T315I substitution, which is emerging as a major cause of resistance to these drugs in CML patients. Structural studies could be used to support the drug design process for the development of inhibitors able to target the T315I substitution, but until now no crystal structure of the T315I Abl mutant has been solved. We show here the first crystal structure of the kinase domain of Abl T315I in complex with PHA-739358, an Aurora kinase inhibitor currently in clinical development for solid and hematologic malignancies. This compound inhibits in vitro the kinase activity of wild-type Abl and of several mutants, including T315I. The cocrystal structure of T315I Abl kinase domain provides the structural basis for this activity: the inhibitor associates with an active conformation of the kinase domain in the ATP-binding pocket and lacks the steric hindrance imposed by the substitution of threonine by isoleucine.


Assuntos
Benzamidas/química , Benzamidas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Pirazóis/química , Pirazóis/metabolismo , Aurora Quinases , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Piperazinas/farmacologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/farmacologia
4.
J Mol Biol ; 368(3): 691-705, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17368478

RESUMO

All eukaryotic cellular mRNAs contain a 5' m(7)GpppN cap. In addition to conferring stability to the mRNA, the cap is required for pre-mRNA splicing, nuclear export and translation by providing an anchor point for protein binding. In translation, the interaction between the cap and the eukaryotic initiation factor 4E (eIF4E) is important in the recruitment of the mRNAs to the ribosome. Human 4EHP (h4EHP) is a homologue of eIF4E. Like eIF4E it is able to bind the cap but it appears to play a different cellular role, possibly being involved in the fine-tuning of protein expression levels. Here we use X-ray crystallography and isothermal titration calorimetry (ITC) to investigate further the binding of cap analogues and peptides to h4EHP. m(7)GTP binds to 4EHP 200-fold more weakly than it does to eIF4E with the guanine base sandwiched by a tyrosine and a tryptophan instead of two tryptophan residues as seen in eIF4E. The tyrosine resides on a loop that is longer in h4EHP than in eIF4E. The consequent conformational difference between the proteins allows the tyrosine to mimic the six-membered ring of the tryptophan in eIF4E and adopt an orientation that is similar to that seen for equivalent residues in other non-homologous cap-binding proteins. In the absence of ligand the binding site is incompletely formed with one of the aromatic residues being disordered and the side-chain of the other adopting a novel conformation. A peptide derived from the eIF4E inhibitory protein, 4E-BP1 binds h4EHP 100-fold less strongly than eIF4E but in a similar manner. Overall the data, combined with sequence analyses of 4EHP from evolutionary diverse species, strongly support the hypothesis that 4EHP plays a physiological role utilizing both cap-binding and protein-binding functions but which is distinct from eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Guanosina Trifosfato/química , Modelos Moleculares , Proteínas de Ligação ao Cap de RNA/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Sequência Conservada , Cristalografia por Raios X , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Evolução Molecular , Guanosina Trifosfato/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Peptídeos/química , Ligação Proteica , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Capuzes de RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA