Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Faraday Discuss ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868901

RESUMO

Despite extensive experimental and theoretical studies on the kinetics of the O(3P) + C7H8 (toluene) reaction and a pioneering crossed molecular beam (CMB) investigation, the branching fractions (BFs) of the CH3C6H4O(methylphenoxy) + H, C6H5O(phenoxy) + CH3, and spin-forbidden C5H5CH3 (methylcyclopentadiene) + CO product channels remain an open question, which has hampered the proper inclusion of this important reaction in the chemical modelling of various chemical environments. We report a CMB study with universal soft electron-ionization mass-spectrometric detection of the reactions O(3P,1D) + toluene at the collision energy of 34.7 kJ mol-1. From CMB data we have inferred the reaction dynamics and quantified the BFs of the primary products and the role of intersystem crossing (ISC). The CH3-elimination channel dominates (BF = 0.69 ± 0.22) in the O(3P) reaction, while the H-displacement and CO-formation channels are minor (BF = 0.22 ± 0.07 and 0.09 ± 0.05, respectively), with ISC accounting for more than 50% of the reactive flux. Synergistic transition-state theory (TST)-based master equation simulations including nonadiabatic TST on ab initio coupled triplet/singlet potential energy surfaces were employed to compute the product BFs and assist in the interpretation of the CMB results. In the light of the good agreement between the theoretical predictions for the O(3P) + toluene reaction and the CMB results as well as the absolute rate constant as a function of temperature (T) (from literature), the so-validated computational methodology was used to predict channel-specific rate constants as a function of T at 1 atm.

2.
Phys Chem Chem Phys ; 25(30): 20194-20211, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37469256

RESUMO

Acrylonitrile (CH2CHCN) is ubiquitous in space (molecular clouds, solar-type star forming regions, and circumstellar envelopes) and is also abundant in the upper atmosphere of Titan. The reaction O(3P) + CH2CHCN can be of relevance in the chemistry of the interstellar medium because of the abundance of atomic oxygen. The oxidation of acrylonitrile is also important in combustion as the thermal decomposition of pyrrolic and pyridinic structures present in fuel-bound nitrogen generates many nitrogen-bearing compounds, including acrylonitrile. Despite its relevance, limited information exists on this reaction. We report a combined experimental and theoretical investigation of the reactions of acrylonitrile with both ground 3P and excited 1D atomic oxygen. From product angular and time-of-flight distributions in crossed molecular beam experiments with mass spectrometric detection at a collision energy, Ec, of 31.4 kJ mol-1, we have identified the primary reaction products and determined their branching fractions (BFs). Theoretical calculations of the relevant triplet and singlet potential energy surfaces (PESs) were performed to interpret the experimental results and elucidate the reaction mechanism. Adiabatic statistical calculations of product BFs for the decomposition of the main triplet and singlet intermediates have been carried out. Combining the experimental and theoretical results, we conclude that the O(3P) reaction leads to two main product channels: (i) CH2CNH (ketenimine) + CO (dominant with a BF of 0.87 ± 0.05), formed via efficient intersystem crossing from the entrance triplet PES to the underlying singlet PES, and (ii) HCOCHCN + H (minor, with a BF of 0.13 ± 0.05), occurring adiabatically on the triplet PES. Our study suggests the inclusion of this reaction as a possible destruction pathway of CH2CHCN and a possible formation route of CH2CNH in the interstellar medium. The O(1D) + CH2CHCN reaction mainly leads to the formation of CH2CNH + CO adiabatically on the singlet PES. This result can improve models related to the chemistry of interstellar ice and cometary comas, where O(1D) reactions can play a role. Overall, our results are expected to be useful for improving the models of combustion and extraterrestrial environments.

3.
Faraday Discuss ; 245(0): 327-351, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293920

RESUMO

We report on a combined experimental and theoretical investigation of the N(2D) + C6H6 (benzene) reaction, which is of relevance in the aromatic chemistry of the atmosphere of Titan. Experimentally, the reaction was studied (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.8 kJ mol-1 to determine the primary products, their branching fractions (BFs), and the reaction micromechanism, and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 K to 296 K. Theoretically, electronic structure calculations of the doublet C6H6N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to the aromatic ring of C6H6, followed by formation of several cyclic (five-, six-, and seven-membered ring) and linear isomeric C6H6N intermediates that can undergo unimolecular decomposition to bimolecular products. Statistical estimates of product BFs on the theoretical PES were carried out under the conditions of the CMB experiments and at the temperatures relevant for Titan's atmosphere. In all conditions the ring-contraction channel leading to C5H5 (cyclopentadienyl) + HCN is dominant, while minor contributions come from the channels leading to o-C6H5N (o-N-cycloheptatriene radical) + H, C4H4N (pyrrolyl) + C2H2 (acetylene), C5H5CN (cyano-cyclopentadiene) + H, and p-C6H5N + H. Rate constants (which are close to the gas kinetic limit at all temperatures, with the recommended value of 2.19 ± 0.30 × 10-10 cm3 s-1 over the 50-296 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundances as a function of the altitude.

4.
J Phys Chem A ; 127(21): 4609-4623, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207281

RESUMO

The reaction between the ground-state hydroxyl radical, OH(2Π), and ethylene, C2H4, has been investigated under single-collision conditions by the crossed molecular beam scattering technique with mass-spectrometric detection and time-of-flight analysis at the collision energy of 50.4 kJ/mol. Electronic structure calculations of the underlying potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations of product branching fractions on the derived PES for the addition pathway have been performed. The theoretical results indicate a temperature-dependent competition between the anti-/syn-CH2CHOH (vinyl alcohol) + H, CH3CHO (acetaldehyde) + H, and H2CO (formaldehyde) + CH3 product channels. The yield of the H-abstraction channel could not be quantified with the employed methods. The RRKM results predict that under our experimental conditions, the anti- and syn-CH2CHOH + H product channels account for 38% (in similar amounts) of the addition mechanism yield, the H2CO + CH3 channel for ∼58%, while the CH3CHO + H channel is formed in negligible amount (<4%). The implications for combustion and astrochemical environments are discussed.

5.
J Phys Chem A ; 127(3): 685-703, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36638186

RESUMO

Cyanoacetylene (HCCCN), the first member of the cyanopolyyne family (HCnN, where n = 3, 5, 7, ...), is of particular interest in astrochemistry being ubiquitous in space (molecular clouds, solar-type protostars, protoplanetary disks, circumstellar envelopes, and external galaxies) and also relatively abundant. It is also abundant in the upper atmosphere of Titan and comets. Since oxygen is the third most abundant element in space, after hydrogen and helium, the reaction O + HCCCN can be of relevance in the chemistry of extraterrestrial environments. Despite that, scarce information exists not only on the reactions of oxygen atoms with cyanoacetylene but with nitriles in general. Here, we report on a combined experimental and theoretical investigation of the reactions of cyanoacetylene with both ground 3P and excited 1D atomic oxygen and provide detailed information on the primary reaction products, their branching fractions (BFs), and the overall reaction mechanisms. More specifically, the reactions of O(3P, 1D) with HCCCN(X1Σ+) have been investigated under single-collision conditions by the crossed molecular beams scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy, Ec, of 31.1 kJ/mol. From product angular and time-of-flight distributions, we have identified the primary reaction products and determined their branching fractions (BFs). Theoretical calculations of the relevant triplet and singlet potential energy surfaces (PESs) were performed to assist the interpretation of the experimental results and clarify the reaction mechanism. Adiabatic statistical calculations of product BFs for the decomposition of the main triplet and singlet intermediates have also been carried out. Merging together the experimental and theoretical results, we conclude that the O(3P) reaction is characterized by a minor adiabatic channel leading to OCCCN (cyanoketyl) + H (experimental BF = 0.10 ± 0.05), while the dominant channel (BF = 0.90 ± 0.05) occurs via intersystem crossing to the underlying singlet PES and leads to formation of 1HCCN (cyanomethylene) + CO. The O(1D) reaction is characterized by the same two channels, with the relative CO/H yield being slightly larger. Considering the recorded reactive signal and the calculated entrance barrier, we estimate that the rate coefficient for reaction O(3P) + HC3N at 300 K is in the 10-12 cm3 molec-1 s-1 range. Our results are expected to be useful to improve astrochemical and photochemical models. In addition, they are also relevant in combustion chemistry, because the thermal decomposition of pyrrolic and pyridinic structures present in fuel-bound nitrogen generates many nitrogen-bearing compounds, including cyanoacetylene.

6.
ACS Earth Space Chem ; 6(10): 2305-2321, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36303717

RESUMO

We report on a combined experimental and theoretical investigation of the N(2D) + CH2CCH2 (allene) reaction of relevance in the atmospheric chemistry of Titan. Experimentally, the reaction was investigated (i) under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (E c) of 33 kJ/mol to determine the primary products and the reaction micromechanism and (ii) in a continuous supersonic flow reactor to determine the rate constant as a function of temperature from 50 to 296 K. Theoretically, electronic structure calculations of the doublet C3H4N potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction mechanism. The reaction is found to proceed via barrierless addition of N(2D) to one of the two equivalent carbon-carbon double bonds of CH2CCH2, followed by the formation of several cyclic and linear isomeric C3H4N intermediates that can undergo unimolecular decomposition to bimolecular products with elimination of H, CH3, HCN, HNC, and CN. The kinetic experiments confirm the barrierless nature of the reaction through the measurement of rate constants close to the gas-kinetic rate at all temperatures. Statistical estimates of product branching fractions (BFs) on the theoretical PES were carried out under the conditions of the CMB experiments at room temperature and at temperatures (94 and 175 K) relevant for Titan. Up to 14 competing product channels were statistically predicted with the main ones at E c = 33 kJ/mol being formation of cyclic-CH2C(N)CH + H (BF = 87.0%) followed by CHCCHNH + H (BF = 10.5%) and CH2CCNH + H (BF = 1.4%) the other 11 possible channels being negligible (BFs ranging from 0 to 0.5%). BFs under the other conditions are essentially unchanged. Experimental dynamical information could only be obtained on the overall H-displacement channel, while other possible channels could not be confirmed within the sensitivity of the method. This is also in line with theoretical predictions as the other possible channels are predicted to be negligible, including the HCN/HNC + C2H3 (vinyl) channels (overall BF < 1%). The dynamics and product distributions are dramatically different with respect to those observed in the isomeric reaction N(2D) + CH3CCH (propyne), where at a similar E c the main product channels are CH2NH (methanimine) + C2H (BF = 41%), c-C(N)CH + CH3 (BF = 32%), and CH2CHCN (vinyl cyanide) + H (BF = 12%). Rate coefficients (the recommended value is 1.7 (±0.2) × 10-10 cm3 s-1 over the 50-300 K range) and BFs have been used in a photochemical model of Titan's atmosphere to simulate the effect of the title reaction on the species abundance (including any new products formed) as a function of the altitude.

7.
Phys Chem Chem Phys ; 24(37): 22437-22452, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36102850

RESUMO

Methanol is a key species in astrochemistry as its presence and reactivity provides a primary route to the synthesis of more complex interstellar organic molecules (iCOMs) that may eventually be incorporated in newly formed planetary systems. In the interstellar medium, methanol is formed by hydrogenation of CO ices on grains, and its fate upon collisions with interstellar ions should be accounted for to correctly model iCOM abundances in objects at various stages of stellar evolution. The absolute cross sections (CSs) and branching ratios (BRs) for the collisions of He˙+ ions with CH3OH are measured, as a function of the collision energy, using a Guided Ion Beam Mass Spectrometer (GIB-MS). Insights into the dissociative electron (charge) exchange mechanism have been obtained by computing the entrance and exit multidimensional Potential Energy Surfaces (PESs) and by modelling the non-adiabatic transitions using an improved Landau-Zener-Stückelberg approach. Notably, the dynamical treatment reproducing the experimental findings includes a strong orientation effect of the system formed by the small He˙+ ion and the highly polar CH3OH molecule, in the electric field gradient associated to the strongly anisotropic intermolecular interaction. This is a stereodynamical effect that plays a fundamental role in collision events occurring under a variety of conditions, with kinetic energy confined within intervals ranging from the sub-thermal to the hyper-thermal regime.

8.
J Phys Chem A ; 126(36): 6110-6123, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053010

RESUMO

The reaction of electronically excited nitrogen atoms, N(2D), with vinyl cyanide, CH2CHCN, has been investigated under single-collision conditions by the crossed molecular beam (CMB) scattering method with mass spectrometric detection and time-of-flight (TOF) analysis at the collision energy, Ec, of 31.4 kJ/mol. Synergistic electronic structure calculations of the doublet potential energy surface (PES) have been performed to assist in the interpretation of the experimental results and characterize the overall reaction micromechanism. Statistical (Rice-Ramsperger-Kassel-Marcus, RRKM) calculations of product branching fractions (BFs) on the theoretical PES have been carried out at different values of temperature, including the one corresponding to the temperature (175 K) of Titan's stratosphere and at a total energy corresponding to the Ec of the CMB experiment. According to our theoretical calculations, the reaction is found to proceed via barrierless addition of N(2D) to the carbon-carbon double bond of CH2═CH-CN, followed by the formation of cyclic and linear intermediates that can undergo H, CN, and HCN elimination. In competition, the N(2D) addition to the CN group is also possible via a submerged barrier, leading ultimately to N2 + C3H3 formation, the most exothermic of all possible channels. Product angular and TOF distributions have been recorded for the H-displacement channels leading to the formation of a variety of possible C3H2N2 isomeric products. Experimentally, no evidence of CN, HCN, and N2 forming channels was observed. These findings were corroborated by the theory, which predicts a variety of competing product channels, following N(2D) addition to the double bond, with the main ones, at Ec = 31.4 kJ/mol, being six isomeric H forming channels: c-CH(N)CHCN + H (BF = 35.0%), c-CHNCHCN + H (BF = 28.1%), CH2NCCN + H (BF = 26.3%), c-CH2(N)CCN(cyano-azirine) + H (BF = 7.4%), trans-HNCCHCN + H (BF = 1.6%), and cis-HNCCHCN + H (BF = 1.3%), while C-C bond breaking channels leading to c-CH2(N)CH(2H-azirine) + CN and c-CH2(N)C + HCN are predicted to be negligible (0.02% and 0.2%, respectively). The highly exothermic N2 + CH2CCH (propargyl) channel is also predicted to be negligible because of the very high isomerization barrier from the initial addition intermediate to the precursor intermediate able to lead to products. The predicted product BFs are found to have, in general, a very weak energy dependence. The above cyclic and linear products containing an additional C-N bond could be potential precursors of more complex, N-rich organic molecules that contribute to the formation of the aerosols on Titan's upper atmosphere. Overall, the results are expected to have a significant impact on the gas-phase chemistry of Titan's atmosphere and should be properly included in the photochemical models.

9.
J Phys Chem A ; 126(22): 3569-3582, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640168

RESUMO

The reaction between cyano radicals (CN, X2Σ+) and cyanoethene (C2H3CN) has been investigated by a combined approach coupling crossed molecular beam (CMB) experiments with mass spectrometric detection and time-of-flight analysis at a collision energy of 44.6 kJ mol-1 and electronic structure calculations to determine the relevant potential energy surface. The experimental results can be interpreted by assuming the occurrence of a dominant reaction pathway leading to the two but-2-enedinitrile (1,2-dicyanothene) isomers (E- and Z-NC-CH═CH-CN) in a H-displacement channel and, to a much minor extent, to 1,1-dicyanoethene, CH2C(CN)2. In order to derive the product branching ratios under the conditions of the CMB experiments and at colder temperatures, including those relevant to Titan and to cold interstellar clouds, we have carried out RRKM statistical calculations using the relevant potential energy surface of the investigated reaction. We have also estimated the rate coefficient at very low temperatures by employing a semiempirical method for the treatment of long-range interactions. The reaction has been found to be barrierless and fast also under the low temperature conditions of cold interstellar clouds and the atmosphere of Titan. Astrophysical implications and comparison with literature data are also presented. On the basis of the present work, 1,2-dicyanothene and 1,1-dicyanothene are excellent candidates for the search of dinitriles in the interstellar medium.

10.
Molecules ; 27(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35408696

RESUMO

The reaction between the cyano radical CN and cyanoacetylene molecule HC3N is of great interest in different astronomical fields, from star-forming regions to planetary atmospheres. In this work, we present a new synergistic theoretical approach for the derivation of the rate coefficient for gas phase neutral-neutral reactions. Statistic RRKM calculations on the Potential Energy Surface are coupled with a semiempirical analysis of the initial bimolecular interaction. The value of the rate coefficient for the HC3N + CN → H + NCCCCN reaction obtained with this method is compared with previous theoretical and experimental investigations, showing strengths and weaknesses of the new presented approach.

11.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615325

RESUMO

The peroxymonocarbonate anion, HCO4-, the covalent adduct between the carbon dioxide and hydrogen peroxide anion, effectively reacts with SO2 in the gas phase following three oxidative routes. Mass spectrometric and electronic structure calculations show that sulphur dioxide is oxidised through a common intermediate to the hydrogen sulphate anion, sulphur trioxide, and sulphur trioxide anion as primary products through formal HO2-, oxygen atom, and oxygen ion transfers. The hydrogen sulphite anion is also formed as a secondary product from the oxygen atom transfer path. The uncommon nucleophilic behaviour of HCO4- is disclosed by the Lewis acidic properties of SO2, an amphiphilic molecule that forms intermediates with characteristic and diagnostic geometries with peroxymonocarbonate.


Assuntos
Oxidantes , Oxigênio , Oxidantes/química , Ânions , Modelos Teóricos
12.
J Phys Chem A ; 125(40): 8846-8859, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34609869

RESUMO

The reaction of excited nitrogen atoms N(2D) with CH3CCH (methylacetylene) was investigated under single-collision conditions by the crossed molecular beams (CMB) scattering method with mass spectrometric detection and time-of-flight analysis at the collision energy (Ec) of 31.0 kJ/mol. Synergistic electronic structure calculations of the doublet potential energy surface (PES) were performed to assist the interpretation of the experimental results and characterize the overall reaction micromechanism. Theoretically, the reaction is found to proceed via a barrierless addition of N(2D) to the carbon-carbon triple bond of CH3CCH and an insertion of N(2D) into the CH bond of the methyl group, followed by the formation of cyclic and linear intermediates that can undergo H, CH3, and C2H elimination or isomerize to other intermediates before unimolecularly decaying to a variety of products. Kinetic calculations for addition and insertion mechanisms and statistical (Rice-Ramsperger-Kassel-Marcus) computations of product branching fractions (BFs) on the theoretical PES were performed at different values of total energy, including the one corresponding to the temperature (175 K) of Titan's stratosphere and that of the CMB experiment. Up to 14 competing product channels were statistically predicted, with the main ones, at Ec = 31.0 kJ/mol, being the formation of CH2NH (methanimine) + C2H (ethylidyne) (BF = 0.41), c-C(N)CH + CH3 (BF = 0.32), CH2CHCN (acrylonitrile) + H (BF = 0.12), and c-CH2C(N)CH + H (BF = 0.04). Of the 14 possible channels, seven correspond to H displacement channels of different exothermicity, for a total H channel BF of ∼0.25 at Ec = 31.0 kJ/mol. Experimentally, dynamical information could only be obtained about the overall H channels. In particular, the experiment corroborates the formation of acrylonitrile + H, which is the most exothermic of all 14 reaction channels and is theoretically calculated to be the dominant H-forming channel (BF = 0.12). The products containing a novel C-N bond could be potential precursors to form other nitriles (C2N2, C3N) or more complex organic species containing N atoms in planetary atmospheres, such as those of Titan and Pluto. Overall, the results are expected to have a potentially significant impact on the understanding of the gas-phase chemistry of Titan's atmosphere and the modeling of that atmosphere.

13.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932839

RESUMO

Molecular dications are doubly charged cations of importance in flames, plasma chemistry and physics and in the chemistry of the upper atmosphere of Planets. Furthermore, they are exotic species able to store a considerable amount of energy at a molecular level. This high energy content of several eV can be easily released as translational energy of the two fragment monocations generated by their Coulomb explosion. For such a reason, they were proposed as a new kind of alternative propellant. The present topic review paper reports on an overview of the main contributions made by the authors' research groups in the generation and characterization of simple molecular dications during the last 40 years of coupling experimental and theoretical efforts.


Assuntos
Cátions , Espectrometria de Massas/métodos , Conformação Molecular , Atmosfera , Benzeno/química , Elétrons , Cinética , Metais Alcalinoterrosos , Hidrocarbonetos Policíclicos Aromáticos , Termodinâmica
14.
Front Chem ; 7: 621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572712

RESUMO

A photoelectron-photoion-photoion coincidence technique, using an ion imaging detector and tunable synchrotron radiation in the 18.0-37.0 eV photon energy range, inducing the ejection of molecular valence electrons, has been applied to study the double ionization of the propylene oxide, a simple prototype chiral molecule. The experiment performed at the Elettra Synchrotron Facility (Trieste, Italy) allowed to determine angular distributions for ions produced by the two-body dissociation reactions following the Coulomb explosion of the intermediate (C3H6O)2+ molecular dication. The analysis of the coincidence spectra recorded at different photon energies was done in order to determine the dependence of the ß anisotropy parameter on the photon energy for the investigated two-body fragmentation channels. In particular, the reaction leading to CH 3 + + C2H3O+ appears to be characterized by an increase of ß, from ß ≈ 0.00 up to ß = 0.59, as the photon energy increases from 29.7 to 37.0 eV, respectively. This new observation confirms that the dissociation channel producing CH 3 + and C2H3O+ final ions can occur with two different microscopic mechanisms as already indicated by the bimodality obtained in the kinetic energy released (KER) distributions as a function of the photon energy in a recent study. Energetic considerations suggest that experimental data are compatible with the formation of two different stable isomers of C2H3O+: acetyl and oxiranyl cations. These new experimental data are inherently relevant and are mandatory information for further experimental and theoretical investigations involving oriented chiral molecules and linearly or circularly polarized radiation. This work is in progress in our laboratory.

15.
ChemistryOpen ; 8(9): 1190-1198, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31508268

RESUMO

A gas-phase investigation of the d-fructose dehydration reaction in the presence of base has been performed by the joint application of mass spectrometric techniques and theoretical calculations. Protonated addition products of d-fructose and base were generated in the gas phase by electrospray ionization using several bases of different proton affinity. The intermediates, products and decomposition channels were investigated by ion trap mass spectrometry. Electronic structure calculations allowed the identification of the ionic intermediates and products of a selected system containing NH3, helping to rationalize the observed reaction pathways. The obtained results show that the final product, the protonated 5-hydroxymethyl-2-furaldheyde [5-HMF]H+, is better formed using selected bases and only if these remain clustered until the end of the dehydration process.

16.
Front Chem ; 7: 386, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214569

RESUMO

We theoretically investigate graphene layers, proposing them as membranes of subnanometer size suitable for CH4/N2 separation and gas uptake. The observed potential energy surfaces, representing the intermolecular interactions within the CH4/N2 gaseous mixtures and between these and the graphene layers, have been formulated by adopting the so-called Improved Lennard-Jones (ILJ) potential, which is far more accurate than the traditional Lennard-Jones potential. Previously derived ILJ force fields are used to perform extensive molecular dynamics simulations on graphene's ability to separate and adsorb the CH4/N2 mixture. Furthermore, the intramolecular interactions within graphene were explicitly considered since they are responsible for its flexibility and the consequent out-of-plane movements of the constituting carbon atoms. The effects on the adsorption capacity of graphene caused by introducing its flexibility in the simulations are assessed via comparison of different intramolecular force fields giving account of flexibility against a simplified less realistic model that considers graphene to be rigid. The accuracy of the potentials guarantees a quantitative description of the interactions and trustable results for the dynamics, as long as the appropriate set of intramolecular and intermolecular force fields is chosen. In particular it is shown that only if the flexibility of graphene is explicitly taken into account, a simple united-atom interaction potential can provide correct predictions. Conversely, when using an atomistic model, neglecting in the simulations the intrinsic flexibility of the graphene sheet has a minor effect. From a practical point of view, the global analysis of the whole set of results proves that these nanostructures are versatile materials competitive with other carbon-based adsorbing membranes suitable to cope with CH4 and N2 adsorption.

17.
Front Chem ; 7: 326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139618

RESUMO

Bioalcohols are a promising family of biofuels. Among them, 1-butanol has a strong potential as a substitute for petrol. In this manuscript, we report on a theoretical and experimental characterization of 1-butanol thermal decomposition, a very important process in the 1-butanol combustion at high temperatures. Advantage has been taken of a flash pyrolysis experimental set-up with mass spectrometric detection, in which the brief residence time of the pyrolyzing mixture inside a short, resistively heated SiC tube allows the identification of the primary products of the decomposing species, limiting secondary processes. Dedicated electronic structure calculations of the relevant potential energy surface have also been performed and RRKM estimates of the rate coefficients and product branching ratios up to 2,000 K are provided. Both electronic structure and RRKM calculations are in line with previous determinations. According to the present study, the H2O elimination channel leading to 1-butene is more important than previously believed. In addition to that, we provide experimental evidence that butanal formation by H2 elimination is not a primary decomposition route. Finally, we have experimental evidence of a small yield of the CH3 elimination channel.

19.
Phys Chem Chem Phys ; 20(8): 5478-5489, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29082409

RESUMO

The reaction between cyano radicals (which are ubiquitous in interstellar clouds) and methylamine (a molecule detected in various interstellar sources) has been investigated in a synergistic experimental and theoretical study. The reaction has been found to be very fast in the entire range of temperatures investigated (23-297 K) by using a CRESU apparatus coupled to pulsed laser photolysis - laser induced fluorescence. The global experimental rate coefficient is given by In addition, dedicated electronic structure calculations of the underlying potential energy surface have been performed, together with capture theory and RRKM calculations. The experimental data have been interpreted in the light of the theoretical calculations and the product branching ratio has been established. According to the present study, in the range of temperatures investigated the title reaction is an efficient interstellar route of formation of cyanamide, NH2CN, another interstellar species. The second most important channel is the one leading to methyl cyanamide, CH3NHCN (an isomer of aminoacetonitrile), via a CN/H exchange mechanism with a yield of 12% of the global reaction in the entire range of temperatures explored. For a possible inclusion in future astrochemical models we suggest, by referring to the usual expression the following values: α = 3.68 × 10-12 cm3 molec-1 s-1, ß = -1.80, γ = 7.79 K for the channel leading to NH2CN + CH3; α = 5.05 × 10-13 cm3 molec-1 s-1, ß = -1.82, γ = 7.93 K for the channel leading to CH3NHCN + H.

20.
Chemistry ; 23(49): 11752-11756, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28632305

RESUMO

The gas-phase reactivity of doubly-charged vanadium hydroxides anions with SO2 has been studied by experimental and computational methods. The obtained results highlight the role of sulfur dioxide in promoting unprecedented bond-forming reactions, which produce singly-charged products by breaking the Vx Oy skeleton or a terminal V-O bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA