Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 70(1): 115-131, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239815

RESUMO

The common fig bears a unique closed inflorescence structure, the syconium, composed of small individual drupelets that develop from the ovaries, which are enclosed in a succulent receptacle of vegetative origin. The fig ripening process is traditionally classified as climacteric; however, recent studies have suggested that distinct mechanisms exist in its reproductive and non-reproductive parts. We analysed ABA and ethylene production, and expression of ABA-metabolism, ethylene-biosynthesis, MADS-box, NAC, and ethylene response-factor genes in inflorescences and receptacles of on-tree fruit treated with ABA, ethephon, fluridone, and nordihydroguaiaretic acid (NDGA). Exogenous ABA and ethephon accelerated fruit ripening and softening, whereas fluridone and NDGA had the opposite effect, delaying endogenous ABA and ethylene production compared to controls. Expression of the ABA-biosynthesis genes FcNCED2 and FcABA2, ethylene-biosynthesis genes FcACS4, FcACOL, and FcACO2, FcMADS8, 14, 15, FcNAC1, 2, 5, and FcERF9006 was up-regulated by exogenous ABA and ethephon. NDGA down-regulated FcNCED2 and FcABA2, whereas fluridone down-regulated FcABA2; both down-regulated the ethylene-related genes. These results demonstrate the key role of ABA in regulation of ripening by promoting ethylene production, as in the climacteric model plant tomato, especially in the inflorescence. However, increasing accumulation of endogenous ABA until full ripeness and significantly low expression of ethylene-biosynthesis genes in the receptacle suggests non-climacteric, ABA-dependent ripening in the vegetative-originated succulent receptacle part of the fruit.


Assuntos
Ácido Abscísico/farmacologia , Ficus/crescimento & desenvolvimento , Masoprocol/farmacologia , Compostos Organofosforados/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Piridonas/farmacologia , Ácido Abscísico/antagonistas & inibidores , Etilenos/farmacologia , Ficus/genética , Ficus/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Front Plant Sci ; 7: 1696, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965676

RESUMO

In the unconventional climacteric fig (Ficus carica) fruit, pollinated and parthenocarpic fruit of the same genotype exhibit different ripening characteristics. Integrative comparative analyses of tissue-specific transcript and of hormone levels during fruit repining from pollinated vs. parthenocarpic fig fruit were employed to unravel the similarities and differences in their regulatory processes during fruit repining. Assembling tissue-specific transcripts into 147,000 transcripts with 53,000 annotated genes provided new insights into the spatial distribution of many classes of regulatory and structural genes, including those related to color, taste and aroma, storage, protein degradation, seeds and embryos, chlorophyll, and hormones. Comparison of the pollinated and parthenocarpic tissues during fruit ripening showed differential gene expression, especially in the fruit inflorescence. The distinct physiological green phase II and ripening phase III differed significantly in their gene-transcript patterns in both pulp and inflorescence tissues. Gas chromatographic analysis of whole fruits enabled the first determination of ripening-related hormone levels from pollinated and non-pollinated figs. Ethylene and auxin both increased during fruit ripening, irrespective of pollination, whereas no production of active gibberellins or cytokinins was found in parthenocarpic or pollinated ripening fruit. Tissue-specific transcriptome revealed apparent different metabolic gene patterns for ethylene, auxin and ABA in pollinated vs. parthenocarpic fruit, mostly in the fruit inflorescence. Our results demonstrate that the production of abscisic acid (ABA), non-active ABA-GE conjugate and non-active indoleacetic acid (IAA)-Asp conjugate in pollinated fruits is much higher than in parthenocarpic fruits. We suggest that fruit ripening is coordinated by the reproductive part of the syconium and the differences in ABA production between pollinated and parthenocarpic fig fruit might be the key to their different ripening characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA