Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 379(6634): eabn8671, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36137011

RESUMO

Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide-bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu's parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu's parent body formed ~2 million years after the beginning of Solar System formation.

2.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523962

RESUMO

Equilibrium condensation of solar gas is often invoked to explain the abundance of refractory elements in planets and meteorites. This is partly motivated, by the observation that the depletions in both the least and most refractory rare earth elements (REEs) in meteoritic group II calcium-aluminum-rich inclusions (CAIs) can be reproduced by thermodynamic models of solar nebula condensation. We measured the isotopic compositions of Ce, Nd, Sm, Eu, Gd, Dy, Er, and Yb in eight CAIs to test this scenario. Contrary to expectation for equilibrium condensation, we find light isotope enrichment for the most refractory REEs and more subdued isotopic variations for the least refractory REEs. This suggests that group II CAIs formed by a two-stage process involving fast evaporation of preexisting materials, followed by near-equilibrium recondensation. The calculated time scales are consistent with heating in events akin to FU Orionis- or EX Lupi-type outbursts of eruptive pre-main-sequence stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA