Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337615

RESUMO

Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Aterosclerose/metabolismo , Dieta , S-Adenosilmetionina/metabolismo , Ácido Fólico/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Metaboloma , Homocisteína/metabolismo , Apolipoproteínas/metabolismo
2.
J Nutr Biochem ; 126: 109562, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176626

RESUMO

Ketogenic diets (KDs) are very high-fat low-carbohydrate diets that promote nutritional ketosis and are widely used for weight loss, although concerns about potential adverse cardiovascular effects remain. We investigated a very high-fat KD's vascular impact and plasma metabolic signature compared to a non-ketogenic high-fat diet (HFD). Apolipoprotein E deficient (ApoE -/-) mice were fed a KD (%kcal:81:1:18, fat/carbohydrate/protein), a non-ketogenic high-fat diet with half of the fat content (HFD) (%kcal:40:42:18, fat/carbohydrate/protein) for 12 weeks. Plasma samples were used to quantify the major ketone body beta-hydroxybutyrate (BHB) and several pro-inflammatory cytokines (IL-6, MCP-1, MIP-1alpha, and TNF alpha), and to targeted metabolomic profiling by mass spectrometry. In addition, aortic atherosclerotic lesions were quantified ex-vivo by magnetic resonance imaging (MRI) on a 14-tesla system. KD was atherogenic when compared to the control diet, but KD mice, when compared to the HFD group (1) had markedly higher levels of BHB and lower levels of cytokines, confirming the presence of ketosis that alleviated the well-established fat-induced systemic inflammation; (2) displayed significant changes in the plasma metabolome that included a decrease in lipophilic metabolites and an increase in hydrophilic metabolites; (3) had significantly lower levels of several atherogenic lipid metabolites, including phosphatidylcholines, cholesterol esters, sphingomyelins, and ceramides; and (4) presented significantly lower aortic plaque burden. KD was atherogenic and was associated with specific metabolic changes but alleviated the fat-induced inflammation and lessened the progression of atherosclerosis when compared to the HFD.


Assuntos
Aterosclerose , Cetose , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/etiologia , Aterosclerose/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Metaboloma
3.
MAGMA ; 36(6): 887-896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37421501

RESUMO

OBJECTIVES: Pre-clinical models of human atherosclerosis are extensively used; however, traditional histological methods do not allow for a holistic view of vascular lesions. We describe an ex-vivo, high-resolution MRI method that allows the 3 dimensional imaging of the vessel for aortic plaque visualization and quantification. MATERIALS AND METHODS: Aortas from apolipoprotein-E-deficient (apoE-/-) mice fed an atherogenic diet (group 1) or a control diet (group 2) were subjected to 14 T MR imaging using a 3D gradient echo sequence. The obtained data sets were reconstructed (Matlab), segmented, and analyzed (Avizo). The aortas were further sectioned and subjected to traditional histological analysis (Oil-Red O and hematoxylin staining) for comparison. RESULTS: A resolution up to 15 × 10x10 µm3 revealed that plaque burden (mm3) was significantly (p < 0.05) higher in group 1 (0.41 ± 0.25, n = 4) than in group 2 (0.01 ± 0.01, n = 3). The achieved resolution provided similar detail on the plaque and the vessel wall morphology compared with histology. Digital image segmentation of the aorta's lumen, plaque, and wall offered three-dimensional visualizations of the entire, intact aortas. DISCUSSION: 14 T MR microscopy provided histology-like details of pathologically relevant vascular lesions. This work may provide the path research needs to take to enable plaque characterization in clinical applications.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Microscopia , Aterosclerose/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Aorta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
4.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239961

RESUMO

HNF4α, a member of the nuclear receptor superfamily, regulates the genes involved in lipid and glucose metabolism. The expression of the RARß gene in the liver of HNF4α knock-out mice was higher versus wildtype controls, whereas oppositely, RARß promoter activity was 50% reduced by the overexpression of HNF4α in HepG2 cells, and treatment with retinoic acid (RA), a major metabolite of vitamin A, increased RARß promoter activity 15-fold. The human RARß2 promoter contains two DR5 and one DR8 binding motifs, as RA response elements (RARE) proximal to the transcription start site. While DR5 RARE1 was previously reported to be responsive to RARs but not to other nuclear receptors, we show here that mutation in DR5 RARE2 suppresses the promoter response to HNF4α and RARα/RXRα. Mutational analysis of ligand-binding pocket amino acids shown to be critical for fatty acid (FA) binding indicated that RA may interfere with interactions of FA carboxylic acid headgroups with side chains of S190 and R235, and the aliphatic group with I355. These results could explain the partial suppression of HNF4α transcriptional activation toward gene promoters that lack RARE, including APOC3 and CYP2C9, while conversely, HNF4α may bind to RARE sequences in the promoter of the genes such as CYP26A1 and RARß, activating these genes in the presence of RA. Thus, RA could act as either an antagonist towards HNF4α in genes lacking RAREs, or as an agonist for RARE-containing genes. Overall, RA may interfere with the function of HNF4α and deregulate HNF4α targets genes, including the genes important for lipid and glucose metabolism.


Assuntos
Fator 4 Nuclear de Hepatócito , Hepatócitos , Receptores do Ácido Retinoico , Tretinoína , Animais , Humanos , Camundongos , Glucose , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Lipídeos , Receptor alfa de Ácido Retinoico/genética , Tretinoína/farmacologia , Receptores do Ácido Retinoico/genética
5.
Immunohorizons ; 7(1): 17-29, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637518

RESUMO

Vitamin A (VA) deficiency (VAD) is observed in both humans and mice with lupus nephritis. However, whether VAD is a driving factor for accelerated progression of lupus nephritis is unclear. In this study, we investigated the effect of VAD on the progression of lupus nephritis in a lupus-prone mouse model, MRL/lpr. We initiated VAD either during gestation or after weaning to reveal a potential time-dependent effect. We found exacerbated lupus nephritis at ∼15 wk of age with both types of VAD that provoked tubulointerstitial nephritis leading to renal failure. This was concomitant with significantly higher mortality in all VAD mice. Importantly, restoration of VA levels after weaning reversed VAD-induced mortality. These results suggest VAD-driven acceleration of tubulointerstitial lupus nephritis. Mechanistically, at the earlier time point of 7 wk of age and before the onset of clinical lupus nephritis, continued VAD (from gestation until postweaning) enhanced plasma cell activation and augmented their autoantibody production, while also increasing the expansion of T lymphocytes that could promote plasma cell autoreactivity. Moreover, continued VAD increased the renal infiltration of plasmacytoid dendritic cells. VAD initiated after weaning, in contrast, showed modest effects on autoantibodies and renal plasmacytoid dendritic cells that were not statistically significant. Remarkably, analysis of gene expression in human kidney revealed that the retinoic acid pathway was decreased in the tubulointerstitial region of lupus nephritis, supporting our findings in MRL/lpr mice. Future studies will elucidate the underlying mechanisms of how VAD modulates cellular functions to exacerbate tubulointerstitial lupus nephritis.


Assuntos
Nefrite Lúpica , Nefrite Intersticial , Camundongos , Humanos , Animais , Nefrite Lúpica/genética , Camundongos Endogâmicos MRL lpr , Rim , Autoanticorpos
6.
J Nutr ; 152(12): 2716-2726, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36208911

RESUMO

BACKGROUND: Obesity is associated with chronic inflammation and is a risk factor for insufficient milk production. Inflammation-mediated suppression of LPL could inhibit mammary uptake of long-chain fatty acids (LCFAs; >16 carbons). OBJECTIVES: In an ancillary case-control analysis, we investigated whether women with low milk production despite regular breast emptying have elevated inflammation and disrupted transfer of LCFAs from plasma into milk. METHODS: Data and specimens from a low milk supply study and an exclusively breastfeeding control group were analyzed, with milk production measured by 24-h test-weighing at 2-10 wk postpartum. Low milk supply groups were defined as very low (VL; <300 mL/d; n = 23) or moderate (MOD; ≥300 mL/d; n = 20) milk production, and compared with controls (≥699 mL/d; n = 18). Serum and milk fatty acids (weight% of total) were measured by GC, serum and milk TNF-α by ELISA, and serum high-sensitivity C-reactive protein (hsCRP) by clinical analyzer. Group differences were assessed by linear regression models, chi-square exact tests, and Kruskal-Wallis nonparametric tests. RESULTS: VL cases, as compared with MOD cases and controls, had higher prevalence of elevated serum hsCRP (>5 mg/L; 57%, 15%, and 22%, respectively; P = 0.004), detectable milk TNF-α (67%, 32%, and 33%, respectively; P = 0.04), and obesity (78%, 40%, and 22%, respectively; P = 0.003). VL cases had lower mean ± SD LCFAs in milk (60% ± 3%) than MOD cases (65% ± 4%) and controls (66% ± 5%) (P < 0.001). Milk and serum LCFAs were strongly correlated in controls (r = 0.82, P < 0.001), but not in the MOD (r = 0.25, P = 0.30) or VL (r = 0.20, P = 0.41) groups (Pint < 0.001). CONCLUSIONS: Mothers with very low milk production have significantly higher obesity and inflammatory biomarkers, lower LCFAs in milk, and disrupted association between plasma and milk LCFAs. These data support the hypothesis that inflammation disrupts normal mammary gland fatty acid uptake. Further research should address impacts of inflammation and obesity on mammary fatty acid uptake for milk production.


Assuntos
Ácidos Graxos , Leite , Feminino , Humanos , Animais , Leite/metabolismo , Ácidos Graxos/metabolismo , Lactação , Proteína C-Reativa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Obesidade/metabolismo , Inflamação/metabolismo
7.
Biomedicines ; 10(9)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36140423

RESUMO

Healthy pediatric immune responses depend on adequate vitamin A and D levels. Relationships between solar ultraviolet B (UVB) radiation and vitamin D are well understood, while relationships between sunlight, vitamin A, and its serum escort, retinol binding protein (RBP), are not. A pediatric clinical study enrolled 2-8-year-old children at various times between September 2016 and March 2017, inclusive, in Memphis, Tennessee. A serum sample from each child was then assayed to examine the influence of season on vitamin levels. We found that RBP and RBP/retinol molar ratios decreased in winter months and RBP/retinol ratios correlated positively with the average daily sunlight hours per month. A food frequency questionnaire given to parents/guardians indicated a shift in dietary intake from plant-based foods to animal-based foods by children between winter and spring months. This translated to higher retinol and zinc (integral to RBP-transthyretin-retinol complexes) in the spring, perhaps explaining the seasonal influence on RBP/retinol. RBP and retinol were associated positively with IgG/IgM and IgA/IgM ratios. RBP and retinol, but not 25(OH)D, also correlated positively with influenza virus-specific antibodies. Retinol correlated negatively, while 25(OH)D correlated positively, with certain serum cytokine/chemokine levels. Significant differences in 25(OH)D, immunoglobulin ratios, and cytokines/chemokines were observed between black and white children. In sum, seasonal changes in dietary foods rich in retinol and zinc may have influenced RBP levels, which in turn influenced innate and adaptive immune responses. Results encourage routine monitoring and reporting of season, RBP, and vitamin levels in future clinical studies, as seasons may affect sunlight exposures, diet, vitamin levels, and immune protection against infectious disease.

8.
Nutrients ; 14(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36014920

RESUMO

Human parvovirus B19 causes life-threatening anemia due to transient red cell aplasia (TRCA) in individuals with sickle cell disease (SCD). Children with SCD experiencing profound anemia during TRCA often require red blood cell transfusions and hospitalization. The prevalence of vitamin deficiencies in SCD is high and deficiencies are associated with respiratory and pain symptoms, but the effects of vitamins on acute infection with parvovirus B19 remain unclear. We performed a clinical study in which 20 SCD patients hospitalized with parvovirus B19 infections (Day 0) were monitored over a 120-day time course to query relationships between vitamins A and D and clinical outcomes. There were significant negative correlations between Day 0 vitamin levels and disease consequences (e.g., red blood cell transfusion requirements, inflammatory cytokines). There were significant positive correlations (i) between Day 0 vitamins and peak virus-specific antibodies in nasal wash, and (ii) between Day 0 virus-specific serum plus nasal wash antibodies and absolute reticulocyte counts. There was a significant negative correlation between Day 0 virus-specific serum antibodies and virus loads. To explain the results, we propose circular and complex mechanisms. Low baseline vitamin levels may weaken virus-specific immune responses to permit virus amplification and reticulocyte loss; consequent damage may further reduce vitamin levels and virus-specific immunity. While the complex benefits of vitamins are not fully understood, we propose that maintenance of replete vitamin A and D levels in children with SCD will serve as prophylaxis against parvovirus B19-induced TRCA complications.


Assuntos
Anemia Falciforme , Infecções por Parvoviridae , Parvovirus B19 Humano , Anemia Falciforme/complicações , Anemia Falciforme/terapia , Anticorpos Antivirais , Criança , Humanos , Infecções por Parvoviridae/complicações , Infecções por Parvoviridae/epidemiologia , Vitamina A , Vitaminas
9.
Front Nutr ; 9: 914457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923205

RESUMO

The first discovered vitamin, vitamin A, exists in a range of forms, primarily retinoids and provitamin carotenoids. The bioactive forms of vitamin A, retinol and retinoic acid, have many critical functions in body systems including the eye and immune system. Vitamin A deficiency is associated with dysfunctional immunity, and presents clinically as a characteristic ocular syndrome, xerophthalmia. The immune functions of vitamin A extend to the gut, where microbiome interactions and nutritional retinoids and carotenoids contribute to the balance of T cell differentiation, thereby determining immune status and contributing to inflammatory disease around the whole body. In the eye, degenerative conditions affecting the retina and uvea are influenced by vitamin A. Stargardt's disease (STGD1; MIM 248200) is characterised by bisretinoid deposits such as lipofuscin, produced by retinal photoreceptors as they use and recycle a vitamin A-derived chromophore. Age-related macular degeneration features comparable retinal deposits, such as drusen featuring lipofuscin accumulation; and is characterised by parainflammatory processes. We hypothesise that local parainflammatory processes secondary to lipofuscin deposition in the retina are mediated by T cells interacting with dietary vitamin A derivatives and the gut microbiome, and outline the current evidence for this. No cures exist for Stargardt's or age-related macular degeneration, but many vitamin A-based therapeutic approaches have been or are being trialled. The relationship between vitamin A's functions in systemic immunology and the eye could be further exploited, and further research may seek to leverage the interactions of the gut-eye immunological axis.

10.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625895

RESUMO

Ketogenic diets (KDs) are very low-carbohydrate, very high-fat diets which promote nutritional ketosis and impact energetic metabolism. Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol transport across cell membranes and are critical players in energy homeostasis. Altered AQP expression or function impacts fat accumulation and related comorbidities, such as the metabolic syndrome. Here, we sought to determine whether nutritional ketosis impacts AQPs expression in the context of an atherogenic model. To do this, we fed ApoE-/- (apolipoprotein E-deficient) mice, a model of human atherosclerosis, a KD (Kcal%: 1/81/18, carbohydrate/fat/protein) or a control diet (Kcal%: 70/11/18, carbohydrate/fat/protein) for 12 weeks. Plasma was collected for biochemical analysis. Upon euthanasia, livers, white adipose tissue (WAT), and brown adipose tissue (BAT) were used for gene expression studies. Mice fed the KD and control diets exhibited similar body weights, despite the profoundly different fat contents in the two diets. Moreover, KD-fed mice developed nutritional ketosis and showed increased expression of thermogenic genes in BAT. Additionally, these mice presented an increase in Aqp9 transcripts in BAT, but not in WAT, which suggests the participation of Aqp9 in the influx of excess plasma glycerol to fuel thermogenesis, while the up-regulation of Aqp7 in the liver suggests the involvement of this aquaporin in glycerol influx into hepatocytes. The relationship between nutritional ketosis, energy homeostasis, and the AQP network demands further investigation.

11.
Nutrients ; 13(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34959827

RESUMO

Given that combined vitamin A (VA) and retinoic acid (RA) supplementation stimulated the intestinal uptake of plasma retinyl esters in neonatal rats, we administrated an RA dose as a pretreatment before VA supplementation to investigate the distinct effect of RA on intestinal VA kinetics. On postnatal days (P) 2 and 3, half of the pups received an oral dose of RA (RA group), while the remaining received canola oil as the control (CN). On P4, after receiving an oral dose of 3H-labeled VA, pups were euthanized at selected times (n = 4-6/treatment/time) and intestine was collected. In both CN and RA groups, intestinal VA mass increased dramatically after VA supplementation; however, RA-pretreated pups had relatively higher VA levels from 10 h and accumulated 30% more VA over the 30-h study. Labeled VA rapidly peaked in the intestine of CN pups and then declined from 13 h, while a continuous increase was observed in the RA group, with a second peak at 10 h and nearly twice the accumulation of 3H-labeled VA compared to CN. Our findings indicate that RA pretreatment may stimulate the influx of supplemental VA into the intestine, and the increased VA accumulation suggests a potential VA storage capacity in neonatal intestine.


Assuntos
Transporte Biológico/efeitos dos fármacos , Suplementos Nutricionais , Tretinoína/administração & dosagem , Vitamina A/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Intestino Delgado/metabolismo , Cinética , Masculino , Gravidez , Óleo de Brassica napus/administração & dosagem , Ratos , Ratos Sprague-Dawley
12.
Nutrients ; 13(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684577

RESUMO

Hyperhomocysteneinemia (HHcy) is common in the general population and is a risk factor for atherosclerosis by mechanisms that are still elusive. A hypomethylated status of epigenetically relevant targets may contribute to the vascular toxicity associated with HHcy. Ketogenic diets (KD) are diets with a severely restricted amount of carbohydrates that are being widely used, mainly for weight-loss purposes. However, studies associating nutritional ketosis and HHcy are lacking. This pilot study investigates the effects of mild HHcy induced by nutritional manipulation of the methionine metabolism in the absence of dietary carbohydrates on disease progression and specific epigenetic changes in the apolipoprotein-E deficient (apoE-/-) mouse model. ApoE-/- mice were either fed a KD, a diet with the same macronutrient composition but low in methyl donors (low methyl KD, LMKD), or control diet. After 4, 8 or 12 weeks plasma was collected for the quantification of: (1) nutritional ketosis, (i.e., the ketone body beta-hydroxybutyrate using a colorimetric assay); (2) homocysteine by HPLC; (3) the methylating potential S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoHcy/AdoMet) by LC-MS/MS; and (4) the inflammatory cytokine monocyte chemoattractant protein 1 (MCP1) by ELISA. After 12 weeks, aortas were collected to assess: (1) the vascular AdoHcy/AdoMet ratio; (2) the volume of atherosclerotic lesions by high-field magnetic resonance imaging (14T-MRI); and (3) the content of specific epigenetic tags (H3K27me3 and H3K27ac) by immunofluorescence. The results confirmed the presence of nutritional ketosis in KD and LMKD mice but not in the control mice. As expected, mild HHcy was only detected in the LMKD-fed mice. Significantly decreased MCP1 plasma levels and plaque burden were observed in control mice versus the other two groups, together with an increased content of one of the investigated epigenetic tags (H3K27me3) but not of the other (H3K27ac). Moreover, we are unable to detect any significant differences at the p < 0.05 level for MCP1 plasma levels, vascular AdoMet:AdoHcy ratio levels, plaque burden, and specific epigenetic content between the latter two groups. Nevertheless, the systemic methylating index was significantly decreased in LMKD mice versus the other two groups, reinforcing the possibility that the levels of accumulated homocysteine were insufficient to affect vascular transmethylation reactions. Further studies addressing nutritional ketosis in the presence of mild HHcy should use a higher number of animals and are warranted to confirm these preliminary observations.


Assuntos
Apolipoproteínas E/deficiência , Metilação de DNA/genética , Dieta Cetogênica , Epigênese Genética , Acetilação , Animais , Peso Corporal , Quimiocina CCL2/sangue , Histonas/metabolismo , Homocisteína/sangue , Cetose/sangue , Cetose/genética , Lisina/metabolismo , Masculino , Metaboloma , Camundongos , Projetos Piloto , Placa Aterosclerótica/sangue , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Processamento de Proteína Pós-Traducional
13.
Nutrients ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445012

RESUMO

BACKGROUND: Vitamin A (VA) plays critical roles in prenatal and postnatal development; however, limited information is available regarding maternal VA metabolism during pregnancy and lactation. OBJECTIVES: We investigated the impact of pregnancy and lactation on VA metabolism and kinetics in rats, hypothesizing that changes in physiological status would naturally perturb whole-body VA kinetics. METHODS: Eight-week old female rats (n = 10) fed an AIN-93G diet received an oral tracer dose of 3H-labeled retinol to initiate the kinetic study. On d 21 after dosing, six female rats were mated. Serial blood samples were collected from each female rat at selected times after dose administration until d 14 of lactation. Model-based compartmental analysis was applied to the plasma tracer data to develop VA kinetic models. RESULTS: Our compartmental model revealed that pregnancy resulted in a gradual increase in hepatic VA mobilization, presumably to support different stages of fetal development. Additionally, the model indicates that during lactation, VA derived from dietary intake was the primary source of VA delivered to the mammary gland for milk VA secretion. CONCLUSION: During pregnancy and lactation in rats with an adequate VA intake and previous VA storage, the internal redistribution of VA and increased uptake from diet supported the maintenance of VA homeostasis.


Assuntos
Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Complicações na Gravidez/prevenção & controle , Deficiência de Vitamina A/prevenção & controle , Vitamina A/farmacocinética , Adaptação Fisiológica , Administração Oral , Ração Animal , Animais , Feminino , Lactação/sangue , Fenômenos Fisiológicos da Nutrição Materna , Modelos Biológicos , Estado Nutricional , Valor Nutritivo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/fisiopatologia , Ratos Sprague-Dawley , Vitamina A/administração & dosagem , Vitamina A/sangue , Deficiência de Vitamina A/sangue , Deficiência de Vitamina A/fisiopatologia
14.
J Nutr Biochem ; 98: 108814, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34242724

RESUMO

Vitamin A (VA) deficiency remains prevalent in resource limited areas. Using Citrobacter rodentium infection in mice as a model for diarrheal diseases, previous reports showed reduced pathogen clearance and survival due to vitamin A deficient (VAD) status. To characterize the impact of preexisting VA deficiency on gene expression patterns in the intestines, and to discover novel target genes in VA-related biological pathways, VA deficiency in mice were induced by diet. Total mRNAs were extracted from small intestine (SI) and colon, and sequenced. Differentially Expressed Gene (DEG), Gene Ontology (GO) enrichment, and co-expression network analyses were performed. DEGs compared between VAS and VAD groups detected 49 SI and 94 colon genes. By GO information, SI DEGs were significantly enriched in categories relevant to retinoid metabolic process, molecule binding, and immune function. Three co-expression modules showed significant correlation with VA status in SI; these modules contained four known retinoic acid targets. In addition, other SI genes of interest (e.g., Mbl2, Cxcl14, and Nr0b2) in these modules were suggested as new candidate genes regulated by VA. Furthermore, our analysis showed that markers of two cell types in SI, mast cells and Tuft cells, were significantly altered by VA status. In colon, "cell division" was the only enriched category and was negatively associated with VA. Thus, these data suggested that SI and colon have distinct networks under the regulation of dietary VA, and that preexisting VA deficiency could have a significant impact on the host response to a variety of disease conditions.


Assuntos
Colo/metabolismo , Intestino Delgado/metabolismo , RNA-Seq/métodos , Deficiência de Vitamina A/genética , Animais , Citrobacter rodentium , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Transcriptoma , Tretinoína/metabolismo , Vitamina A/genética , Vitamina A/metabolismo
15.
Biomedicines ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557105

RESUMO

The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE-/-) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE-/- mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation.

16.
Curr Dev Nutr ; 4(10): nzaa096, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32999953

RESUMO

The DRI values for vitamin A were last reviewed and defined in 2001. At the time, there was very sparse data that could be used to set the DRI values for pregnancy, lactation, and infancy. In the subsequent 20 y since the last formal review, a number of findings relevant to the adequacy indicator of visual dark adaptation in pregnancy, the usual vitamin A content of breast milk across lactation stages, and vitamin A metabolism in women and children have been published. Furthermore, identification of genetic variables affecting the bioconversion of provitamin A carotenoids to vitamin A have provided an improved explanation for interindividual variability in responses to provitamin A carotenoids. The purpose of this collection of articles, introduced herein, is to review and apply recent findings about vitamin A status, address current gaps in knowledge, and suggest avenues for future research needed to refine the DRI values for pregnancy, lactation, and early life.

17.
Nutrients ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717800

RESUMO

Hyperhomocysteinemia (HHcy) is a risk factor for atherosclerosis through mechanisms which are still incompletely defined. One possible mechanism involves the hypomethylation of the nuclear histone proteins to favor the progression of atherosclerosis. In previous cell studies, hypomethylating stress decreased a specific epigenetic tag (the trimethylation of lysine 27 on histone H3, H3K27me3) to promote endothelial dysfunction and activation, i.e., an atherogenic phenotype. Here, we conducted a pilot study to investigate the impact of mild HHcy on vascular methylating index, atherosclerosis progression and H3K27me3 aortic content in apolipoprotein E-deficient (ApoE -/-) mice. In two different sets of experiments, male mice were fed high-fat, low in methyl donors (HFLM), or control (HF) diets for 16 (Study A) or 12 (Study B) weeks. At multiple time points, plasma was collected for (1) quantification of total homocysteine (tHcy) by high-performance liquid chromatography; or (2) the methylation index of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH ratio) by liquid chromatography tandem-mass spectrometry; or (3) a panel of inflammatory cytokines previously implicated in atherosclerosis by a multiplex assay. At the end point, aortas were collected and used to assess (1) the methylating index (SAM:SAH ratio); (2) the volume of aortic atherosclerotic plaque assessed by high field magnetic resonance imaging; and (3) the vascular content of H3K27me3 by immunohistochemistry. The results showed that, in both studies, HFLM-fed mice, but not those mice fed control diets, accumulated mildly elevated tHcy plasmatic concentrations. However, the pattern of changes in the inflammatory cytokines did not support a major difference in systemic inflammation between these groups. Accordingly, in both studies, no significant differences were detected for the aortic methylating index, plaque burden, and H3K27me3 vascular content between HF and HFLM-fed mice. Surprisingly however, a decreased plasma SAM: SAH was also observed, suggesting that the plasma compartment does not always reflect the vascular concentrations of these two metabolites, at least in this model. Mild HHcy in vivo was not be sufficient to induce vascular hypomethylating stress or the progression of atherosclerosis, suggesting that only higher accumulations of plasma tHcy will exhibit vascular toxicity and promote specific epigenetic dysregulation.


Assuntos
Aterosclerose , Dieta/efeitos adversos , Progressão da Doença , Histonas/metabolismo , Hiper-Homocisteinemia/metabolismo , Animais , Aorta/diagnóstico por imagem , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/diagnóstico por imagem , Aterosclerose/genética , Citocinas , Metilação de DNA , Epigênese Genética , Hiper-Homocisteinemia/genética , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Projetos Piloto , Placa Aterosclerótica , S-Adenosilmetionina/metabolismo
18.
J Nutr ; 150(7): 1989-1995, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369598

RESUMO

BACKGROUND: Although iron deficiency is known to interrupt vitamin A (VA) metabolism, the ability of iron repletion to restore VA metabolism and kinetics in iron-deficient rats is not well understood. OBJECTIVES: In the present study, we examined the effects of dietary iron repletion on VA status in rats with pre-existing iron deficiency. METHODS: Weanling Sprague-Dawley rats were fed a VA-marginal diet (0.35 mg retinol/kg diet) containing either a normal concentration of iron [35 ppm, control group (CN)] or reduced iron (3 ppm, iron-deficient group, ID-); after 5 wk, 4 rats/group were killed for baseline measurements. A 3H-labeled retinol emulsion was administered intravenously to the remaining rats (n = 6, CN; n = 10, ID-) as tracer to initiate the kinetic study. On day 21 after dosing, n = 5 ID- rats were switched to the CN diet, generating an iron-repletion group (ID+). Blood samples were collected at 34 time points ≤92 d after dose administration, when all rats were killed and iron and VA status were determined. RESULTS: At baseline, ID- rats had developed iron deficiency, with a reduced plasma VA concentration (0.67 compared with 1.20 µmol/L in ID- and CN rats, respectively; P < 0.01) and a tendency toward higher liver VA (265 compared with 187 nmol in ID- and CN rats, respectively; P = 0.10). On day 92, iron deficiency persisted in ID- rats, accompanied by 2-times higher liver VA (456 nmol compared with 190 nmol in ID- and CN rats, respectively; P < 0.001) but lower plasma VA (0.64 compared with 0.94 µmol/L in ID- and CN rats, respectively; P = 0.05). ID+ rats not only recovered from iron deficiency, but also exhibited less liver VA sequestration (276 nmol) and normal plasma VA (0.91 µmol/L, not different from CN rats). CONCLUSIONS: Our results suggest that iron repletion can remove the inhibitory effect of iron deficiency on hepatic mobilization of VA and restore plasma retinol concentrations in iron-deficient rats, setting the stage for kinetic studies of VA turnover in this setting.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacologia , Deficiência de Vitamina A/terapia , Vitamina A/metabolismo , Animais , Dieta , Feminino , Masculino , Ratos , Ratos Sprague-Dawley
19.
Methods Enzymol ; 637: 561-590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32359660

RESUMO

We have used a shortened construct form of the CYP26A1 gene promoter, in a promoter-less vector with either luciferase (known as E4) or a red fluorescent protein, RFP (known as E4.2) as the reporter gene and examined their responses to retinoids in transfected HepG2 and HEK293T cells. The promoter responded linearly to a wide concentration range of at-RA in cells cotransfected with retinoic acid receptors (RAR). The promoter also responded quantitatively to retinol and various other retinoids. An isolated clonal line of HEK293T cells that was permanently transfected with the promoter driving the expression of RFP responded to both at-RA and retinol, and the responses could be measured by fluorescence microscopy and flow cytometry. The promoter was also used to assess the retinoid activity of 3 novel synthetic retinoid analogues. Among them, EC23 was shown to be more potent than at-RA at lower concentrations and also more stable than at-RA. The promoter was also used to estimate the retinoid activities of intact rat serum samples as well as extracts of rat liver and lung, using retinol and at-RA as the reference standards. The retinoid activities could be measured in control rat serum samples and were increased in the serum of at-RA-treated rats. The total retinol and at-RA levels in the rat liver and lung samples determined by this promoter-based assay were compared with total retinol levels determined by the UPLC as the conventional methods. This system should offer a biologically-based alternative to mass-based retinoid analysis.


Assuntos
Receptores do Ácido Retinoico , Retinoides , Animais , Células HEK293 , Humanos , Regiões Promotoras Genéticas , Ratos , Receptores do Ácido Retinoico/genética , Ácido Retinoico 4 Hidroxilase/genética
20.
J Nutr ; 150(7): 1982-1988, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32297934

RESUMO

BACKGROUND: Iron deficiency can result in hyporetinolemia and hepatic vitamin A (VA) sequestration. OBJECTIVES: We used model-based compartmental analysis to determine the impact of iron repletion on VA metabolism and kinetics in iron-deficient rats. METHODS: At weaning, Sprague-Dawley rats were assigned to either a VA-marginal diet (0.35 mg retinol equivalent/kg) with adequate iron (35 ppm, control group [CN]) or reduced iron (3 ppm, iron-deficient group [ID-]), with an equivalent average body weight for each group. After 5 wk, n = 4 rats from each group were euthanized for baseline measurements of VA and iron indices, and the remaining rats (n = 6 CN, n = 10 ID-) received an intravenous injection of 3H-labeled retinol in an emulsion as tracer to initiate the kinetic study. On day 21 after dosing, half of the ID- rats were switched to the CN diet to initiate iron repletion, referred to as the iron-repletion group (ID+). From the time of dosing, 34 serial blood samples were collected from each rat over a 92-d time course. Plasma tracer and tissue tracee data were fitted to 6- and 4-compartment models, respectively, to analyze the kinetic behavior of VA in all groups. RESULTS: Our mathematical model indicated that ID- rats exhibited a nearly 6-fold decrease in liver VA secretion and >4-fold reduction in whole-body VA utilization, compared with CN rats, whereas these perturbed kinetic behaviors were notably corrected in ID+ rats, close to those from the CN group. CONCLUSIONS: Iron repletion can remove the inhibitory effect that iron deficiency exerts on hepatic mobilization of VA and restore retinol kinetic parameters to values similar to that of never-deficient CN rats. Together with improvements in iron and VA indices, our results suggest that restoration of an iron-adequate diet is sufficient to improve VA kinetics after a previous state of iron deficiency.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Ferro da Dieta/administração & dosagem , Ferro da Dieta/farmacologia , Fígado/metabolismo , Vitamina A/administração & dosagem , Vitamina A/metabolismo , Animais , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Deficiência de Vitamina A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA